98
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Clinical and Economic Impact of Point-of-Care CD4 Testing in Mozambique and Other Resource-Limited Settings: A Cost-Effectiveness Analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Emily Hyle and colleagues conduct a cost-effectiveness analysis to estimate the clinical and economic impact of point-of-care CD4 testing compared to laboratory-based tests in Mozambique.

          Please see later in the article for the Editors' Summary

          Abstract

          Background

          Point-of-care CD4 tests at HIV diagnosis could improve linkage to care in resource-limited settings. Our objective is to evaluate the clinical and economic impact of point-of-care CD4 tests compared to laboratory-based tests in Mozambique.

          Methods and Findings

          We use a validated model of HIV testing, linkage, and treatment (CEPAC-International) to examine two strategies of immunological staging in Mozambique: (1) laboratory-based CD4 testing (LAB-CD4) and (2) point-of-care CD4 testing (POC-CD4). Model outcomes include 5-y survival, life expectancy, lifetime costs, and incremental cost-effectiveness ratios (ICERs). Input parameters include linkage to care (LAB-CD4, 34%; POC-CD4, 61%), probability of correctly detecting antiretroviral therapy (ART) eligibility (sensitivity: LAB-CD4, 100%; POC-CD4, 90%) or ART ineligibility (specificity: LAB-CD4, 100%; POC-CD4, 85%), and test cost (LAB-CD4, US$10; POC-CD4, US$24). In sensitivity analyses, we vary POC-CD4-specific parameters, as well as cohort and setting parameters to reflect a range of scenarios in sub-Saharan Africa. We consider ICERs less than three times the per capita gross domestic product in Mozambique (US$570) to be cost-effective, and ICERs less than one times the per capita gross domestic product in Mozambique to be very cost-effective. Projected 5-y survival in HIV-infected persons with LAB-CD4 is 60.9% (95% CI, 60.9%–61.0%), increasing to 65.0% (95% CI, 64.9%–65.1%) with POC-CD4. Discounted life expectancy and per person lifetime costs with LAB-CD4 are 9.6 y (95% CI, 9.6–9.6 y) and US$2,440 (95% CI, US$2,440–US$2,450) and increase with POC-CD4 to 10.3 y (95% CI, 10.3–10.3 y) and US$2,800 (95% CI, US$2,790–US$2,800); the ICER of POC-CD4 compared to LAB-CD4 is US$500/year of life saved (YLS) (95% CI, US$480–US$520/YLS). POC-CD4 improves clinical outcomes and remains near the very cost-effective threshold in sensitivity analyses, even if point-of-care CD4 tests have lower sensitivity/specificity and higher cost than published values. In other resource-limited settings with fewer opportunities to access care, POC-CD4 has a greater impact on clinical outcomes and remains cost-effective compared to LAB-CD4. Limitations of the analysis include the uncertainty around input parameters, which is examined in sensitivity analyses. The potential added benefits due to decreased transmission are excluded; their inclusion would likely further increase the value of POC-CD4 compared to LAB-CD4.

          Conclusions

          POC-CD4 at the time of HIV diagnosis could improve survival and be cost-effective compared to LAB-CD4 in Mozambique, if it improves linkage to care. POC-CD4 could have the greatest impact on mortality in settings where resources for HIV testing and linkage are most limited.

          Please see later in the article for the Editors' Summary

          Editors' Summary

          Background

          AIDS has already killed about 36 million people, and a similar number of people (mostly living in low- and middle-income countries) are currently infected with HIV, the virus that causes AIDS. HIV destroys immune system cells (including CD4 cells, a type of lymphocyte), leaving infected individuals susceptible to other infections. Early in the AIDS epidemic, HIV-infected individuals usually died within ten years of infection. After effective antiretroviral therapy (ART) became available in 1996, HIV infection became a chronic condition for people living in high-income countries, but because ART was expensive, HIV/AIDS remained a fatal disease in low- and middle-income countries. In 2003, the international community began to work towards achieving universal ART coverage, and by the end of 2012, 61% of HIV-positive people (nearly 10 million individuals) living low- and middle-income countries who were eligible for treatment—because their CD4 cell count had fallen below 350 cells/mm 3 of blood or they had developed an AIDS-defining condition—were receiving treatment.

          Why Was This Study Done?

          In sub-Saharan Africa nearly 50% of HIV-infected people eligible for treatment remain untreated, in part because of poor linkage between HIV diagnosis and clinical care. After patients receive a diagnosis of HIV infection, their eligibility for ART initiation is determined by sending a blood sample away to a laboratory for a CD4 cell count (the current threshold for treatment is a CD4 count below 500/mm 3, although low- and middle-income countries have yet to update their national guidelines from the threshold CD4 count below 350/mm 3). Patients have to return to the clinic to receive their test results and to initiate ART if they are eligible for treatment. Unfortunately, many patients are “lost” during this multistep process in resource-limited settings. Point-of-care CD4 tests at HIV diagnosis—tests that are done on the spot and provide results the same day—might help to improve linkage to care in such settings. Here, the researchers use a mathematical model to assess the clinical outcomes and cost-effectiveness of point-of-care CD4 testing at the time of HIV diagnosis compared to laboratory-based testing in Mozambique, where about 1.5 million HIV-positive individuals live.

          What Did the Researchers Do and Find?

          The researchers used a validated model of HIV testing, linkage, and treatment called the Cost-Effectiveness of Preventing AIDS Complications–International (CEPAC-I) model to compare the clinical impact, costs, and cost-effectiveness of point-of-care and laboratory CD4 testing in newly diagnosed HIV-infected patients in Mozambique. They used published data to estimate realistic values for various model input parameters, including the probability of linkage to care following the use of each test, the accuracy of the tests, and the cost of each test. At a CD4 threshold for treatment of 250/mm 3, the model predicted that 60.9% of newly diagnosed HIV-infected people would survive five years if their immunological status was assessed using the laboratory-based CD4 test, whereas 65% would survive five years if the point-of-care test was used. Predicted life expectancies were 9.6 and 10.3 years with the laboratory-based and point-of-care tests, respectively, and the per person lifetime costs (which mainly reflect treatment costs) associated with the two tests were US$2,440 and $US2,800, respectively. Finally, the incremental cost-effectiveness ratio—calculated as the incremental costs of one therapeutic intervention compared to another divided by the incremental benefits—was US$500 per year of life saved, when comparing use of the point-of-care test with a laboratory-based test.

          What Do These Findings Mean?

          These findings suggest that, compared to laboratory-based CD4 testing, point-of-care testing at HIV diagnosis could improve survival for HIV-infected individuals in Mozambique. Because the per capita gross domestic product in Mozambique is US$570, these findings also indicate that point-of-care testing would be very cost-effective compared to laboratory-based testing (an incremental cost-effectiveness ratio less than one times the per capita gross domestic product is regarded as very cost-effective). As with all modeling studies, the accuracy of these findings depends on the assumptions built into the model and on the accuracy of the input parameters. However, the point-of-care strategy averted deaths and was estimated to be cost-effective compared to the laboratory-based test over a wide range of input parameter values reflecting Mozambique and several other resource-limited settings that the researchers modeled. Importantly, these “sensitivity analyses” suggest that point-of-care CD4 testing is likely to have the greatest impact on HIV-related deaths and be economically efficient in settings in sub-Saharan Africa with the most limited health care resources, provided point-of-care CD4 testing improves the linkage to care for HIV-infected people.

          Additional Information

          Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001725.

          Related collections

          Most cited references 39

          • Record: found
          • Abstract: found
          • Article: not found

          Patient Retention in Antiretroviral Therapy Programs in Sub-Saharan Africa: A Systematic Review

          Introduction In the half decade since the first large-scale antiretroviral treatment (ART) programs for HIV/AIDS were launched in sub-Saharan Africa, much attention has focused on patients' day-to-day adherence to antiretroviral (ARV) medications [1–3]. Long-term retention of patients in treatment programs, a prerequisite for achieving any adherence at all, has received far less attention. Perhaps because most large scale treatment providers have few resources available to track missing patients, most studies treat patient attrition as a side issue and focus solely on describing those patients who are retained. Moreover, adherence can be assessed over very short periods, whereas long-term retention requires, by definition, long-standing programs. Attrition from antiretroviral treatment programs is generally divided into four categories. The two most common are (1) the death of the patient—several studies have reported high rates of early mortality—and (2) “loss to follow-up,” a catch-all category for patients who miss scheduled clinic visits or medication pickups for a specified period of time. Some patients remain in care but stop taking ARV medications (3). Others transfer to other facilities and continue on ART (4). Treatment discontinuation raises some of the same concerns about drug resistance that incomplete adherence does and, even worse, negates much of the benefit sought by those implementing treatment programs. Patients with clinical AIDS who discontinue ART will likely die within a relatively short time [4]. High rates of attrition from treatment programs thus pose a serious challenge to program implementers and constitute an inefficient use of scarce treatment resources. In this study, we analyzed reported treatment program retention and attrition in sub-Saharan Africa in order to document the magnitude of the problem and help policy makers and program managers address the challenge of patient retention. Methods Definitions For this review, “retention” refers to patients known to be alive and receiving highly active ART at the end of a follow-up period. “Attrition” is defined as discontinuation of ART for any reason, including death, loss to follow-up, and stopping ARV medications while remaining in care. Transfer to another ART facility, where reported, is not regarded as attrition—patients who transfer are assumed to be retained. We accepted the varying definitions of loss to follow-up used by the respective studies. Many studies considered patients lost if they were more than 3 mo late for a scheduled consultation or medication pickup, but some studies used more or less stringent definitions ranging from 1 to 6 mo late for a scheduled consultation or medication pick-up. Inclusion and Exclusion Criteria Studies were included in the review if they reported the proportion of adult HIV-1 patients retained in highly active ART programs implemented in service delivery (nonresearch) settings in sub-Saharan Africa. All patients who initiated ART had to be included in the report, not just those still in care at the time of censoring (i.e., only intention-to-treat analyses were included). Clinical trials, including Phase 3 trials, were excluded, although some subjects of reviewed studies transferred into the treatment program from a clinical trial. A median follow-up period of at least six full months (26 weeks) was also required. Studies that reported mortality but not other categories of attrition and studies that reported only on-treatment analyses, or where we were unable to determine whether the study was intention-to-treat or not, were also excluded. A few of the reviewed studies did not differentiate between adult and pediatric patients; those that considered only pediatric patients were excluded. Search Strategy To identify eligible studies, we conducted a systematic search of the English-language published literature, gray literature (project reports available online), and conference abstracts between 2000 and 2007. The search included Ovid Medline (1996 to July 2007), EMBASE (inception to July 2007), ISI Web of Science (August 2002 to July 2007), the Cumulative Index to Nursing & Allied Health Literature (2002 to July 2007), and the Cochrane Database of Systematic Reviews (inception to second quarter 2007). We also searched the abstracts of the conferences of the International AIDS Society (inception to 2006), the Conference on Retroviruses and Opportunistic Infections (inception to 2007), the HIV Implementers' Meetings (2006–2007), and the South African AIDS Conference (2005–2007). The bibliographies of five recently published reviews of treatment outcomes, mortality, or ARV adherence in resource-constrained settings were also searched [1–3,5,6]. Our search strategy combined the terms “antiretroviral” and “Africa” or “developing countries” with each of retention/attrition/loss to follow-up/mortality/evaluation/efficacy. When more than one source reported on the same cohort of patients, the source containing the most detailed data about retention and attrition or the longest follow-up period was selected for the review. Although non-English databases were not searched, English-language abstracts of non-English papers identified in our search were included. Eligible studies were identified by the first author (SR) and eligibility confirmed by the other authors (MF and CG). It should be noted that the Antiretroviral Therapy in Low Income Countries (ART-LINC) collaboration has recently reported aggregate 1 y mortality and loss to follow-up rates for 13 cohorts in sub-Saharan Africa [5]. Some of the patients in these cohorts are included in the studies reviewed here. To avoid duplication, findings from the ART-LINC cohorts were not included in this analysis but are noted in the discussion. Data Analysis Most studies reported patient attrition at months 6, 12, and/or 24 after treatment initiation. We therefore used these same intervals in this analysis. For papers that reported on intervals other than 6, 12, or 24 mo, we classified the reported attrition rate using the nearest time point. If the report did not list attrition rates by time, but did list a median duration of observation, we estimated attrition at the 6, 12, or 24 mo interval closest to the reported observation period. In some cases, follow-up periods and/or retention rates were calculated by the authors using data provided in the article or extracted from figures (e.g. Kaplan-Meier survival curves). Where appropriate, we calculated weighted averages for demographic features of the cohort participants or other factors related to the studies. For proportions, averages were weighted by the inverse of their variances [1 ÷ (p × [1 − p] ÷ n), where p is the proportion and n is the sample size]. Because we did not have the individual patient data for continuous variables nor their standard deviations, we were unable to calculate variances for these variables. In these situations, we weighted by cohort size. In some instances, studies reported follow-up to 12 or 24 mo but did not report on intermediate retention rates. In plotting attrition for such studies over time we used extrapolated values, taking the midpoint between the known adjacent values. For example, if a study reported to 12 mo but did not report the 6 mo value, we defined the 6 mo value as the midpoint between 0 and 12 mo, with 100% at baseline representing all of those who initially started therapy. We calculated weighted average attrition rates at each interval (6, 12, and 24 mo) for the reported numbers of participants remaining when using reported values and for the estimated numbers of participants remaining when using extrapolated values. Selected demographic variables relating cohort or program characteristics to attrition rates were analyzed using linear regression. Because only a few studies reported beyond 24 mo, we were unable to calculate any meaningful summary statistics beyond the 24 mo mark. To estimate aggregate average attrition rates at 6, 12, and 24 mo we used several approaches. Attrition for each program was plotted separately and attrition rates calculated as the percentage of patients lost per month. We also plotted Kaplan-Meier survival curves using the 6, 12, and 24 mo intervals as the step-down points. Fewer studies presented 12 mo data than 6 mo data, however, and fewer still contained 24 mo data. Many of the studies with the highest attrition contributed data only for the shorter time intervals. Given the concern that shorter durations of reporting could be associated with lower rates of patient retention, we also conducted sensitivity analyses to model possible future retention. For the best-case scenario, we optimistically assumed that no further attrition would occur beyond the last reported observation and extrapolated the last reported retention value forward to 24 mo. In the worst-case scenario, we extrapolated the slope of attrition forward in time, assuming that each cohort's attrition would continue along the same slope from the last reported observation to month 24. We assigned a lower limit of 0% in those situations where the estimated future retention rate fell below 0%. Our midpoint scenario was the mean of the best- and worst-case scenarios. Analyses were conducted using Excel, SAS version 8.2, and SPSS version 11.0. Results We included 32 publications reporting on 33 patient cohorts totaling 74,289 patients in 13 countries in our analysis. These studies were selected from a total of 871 potentially relevant, unique citations identified in our search (Figure 1). Figure 1 Study Flow Chart Table 1 summarizes key features of the studies, including the sites at which they were conducted. Not all of the publications reported all the details we sought about program and patient characteristics and retention, but all provided at least one indicator of patient retention after a median follow-up period of at least 6 mo. The studies report on patients who initiated ART as early as 1996, though most enrolled their cohorts between 2001 and 2004. The studies were published or presented between 2002 and 2007, with the majority appearing as peer reviewed articles in 2006 or 2007. Most of the programs were implemented by the public sector (17 of 33, 52%). Of 33 cohorts, 15 (45%) fully subsidized the cost of ART; six (18%) were partially subsidized; and six (18%) required patients to pay fully for their care; the rest did not report their payment structure. Roughly half were single-site programs (15 of 33, 45%); multi-site programs contributed data from between two and 69 sites. Table 1 Characteristics of Antiretroviral Treatment Programs and Patient Cohorts Included in This Analysis (extended on next page) Table 1 Extended. Table 1 also provides the population characteristics of the cohorts studied. The weighted mean age of the cohort participants was 35.5 y, and 53.7% of all patients were female (range 6%–70%). All but one cohort had median starting CD4+ T cell counts at or well below 200 × 103 cells/mm3, with a weighted mean starting CD4+ T cell count of 132 × 103 cells/mm3 (range 43–204). Table 2 presents the proportion of patients from each cohort who remained alive and under treatment with antiretroviral medications, transferred to another treatment facility, died, were lost to follow-up, or discontinued treatment with ARVs but remained in care at the end of the median follow-up period. Bearing in mind that we excluded studies with less than 6 mo median follow-up, the weighted average follow-up was 9.9 mo, after which time overall retention of patients alive, in care, and on ART was 77.5%. Table 2 Median Follow-Up and Rates of Patient Attrition, as Reported, from Antiretroviral Treatment Programs Across all the cohorts, the largest contributor to attrition was loss to follow-up (56% of attrition), followed by death (40% of attrition). The widely varying definitions of loss to follow-up used by the studies are indicated in Table 2. A small fraction (4% of attrition) discontinued ART but remained under care at the same site. Table 3 reports overall retention at 6, 12, and 24 mo. SA 1 had the highest retention at 12 mo. While this program did not report for 6 mo, at 12 mo its retention of 90% was still higher than the highest reported value among the programs that reported their 6 mo outcomes. The programs with the lowest retention at each time point were Malawi 4 (55%) at 6 mo; Uganda 2 (49%) at 12 mo; and Uganda 1 (46%) at 24 mo. Malawi 4 did not report beyond 6 mo and Uganda 2 did not report beyond 12 mo, but were both on a trajectory toward even lower retention rates at the later time points. Table 3 Retention of Patients at 6, 12, and 24 Months after Initiation of ART Using linear regression, we found no association between 6 mo attrition rates and cohort size (p = 0.32), attrition and baseline CD4+ cell counts (p = 0.72), proportion of women (p = 0.23), or year of program initiation (p = 0.40). Programs that required no payment had higher retention rates at 6 mo compared to those requiring partial or full payment (86.5% versus 76.7%, p = 0.01). Figures 2A–2C plot attrition rates for each cohort separately. The studies are clustered on the basis of duration of reporting. By 6 mo, 9 of 33 cohorts (27%) had 20% or greater attrition rates; by 12 mo this proportion had risen to 16 of 25 reporting cohorts (64%). Figure 2 Attrition Rates by Reporting Duration (A) Studies reporting to 6 mo median follow-up. (B) Studies reporting to 12 mo median follow-up. (C) Studies reporting to 24 mo median follow-up. (D) Weighted mean attrition rates by duration cohort. SA, South Africa. The weighted mean retention rates as reported in the studies were 79.8% at 6 mo, 75.1% at 12 mo, and 61.6% at 24 mo. As an alternative approach, we also plotted Kaplan-Meier survival curves at months 6, 12, and 24 for all the studies combined. The largest fall-off occurred between 6 and 12 mo; overall retention was approximately 89% by 6 mo, 70% by 1 year, and just under 60% by 2 years. Four of the eight studies in Figure 2A with attrition of at least 20% at 6 mo included data only to 6 mo. Similarly, of the cohorts with data at 12 mo and attrition of 25% or more, six of 11 did not extend beyond 12 mo. We therefore calculated the slopes for attrition rates for each group of cohorts in Figure 2A–2C separately, to determine if the average monthly attrition rates differed as the duration of reporting increased. As shown in Figure 2D, the weighted mean attrition rates were 3.3%/month, 1.9%/month, and 1.6%/month for studies reporting to 6 mo, 12 mo, and 24 mo, respectively, raising the possibility that shorter durations of reporting were associated with lower retention rates. Given this apparent reporting bias, we were concerned that reporting average retention rates using the simple aggregate weighted averages reported above would overestimate actual retention. We therefore conducted sensitivity analyses to model attrition rates under three different scenarios. As shown in Figure 3, all three scenarios are the same at 6 mo, with approximately 80% retention. Under the best-case scenario, further attrition would be negligible, with more than 76% still retained by the end of 2 y. Under the worst-case scenario, 76% of patients would be lost by 2 y. The midpoint scenario predicted patient retention of 50% by 2 y. Figure 3 Sensitivity Analysis for Attrition Discussion The analysis presented here suggests that ART programs in Africa are retaining, on average, roughly 80% of their patients after 6 mo on ART and between one-fourth and three-fourths of their patients by the end of 2 y, depending on the estimating method used. Prior to the availability of ART in Africa, the median interval from HIV infection to AIDS-related death was under 10 y; once a patient was diagnosed with AIDS, median survival was less than 1 y [7]. Since most patients in Africa initiate ART only after an AIDS diagnosis, most ART patients would have died within a year had antiretroviral therapy not been available. Each patient who is retained in care and on ART can thus be regarded as a life saved and a source of tremendous benefit to patients' families and communities. For those who have struggled to launch and expand treatment programs in resource-constrained settings, reaching a 60% patient retention—and thus survival—rate after two years of treatment, as estimated by the Kaplan-Meier survival analysis, in just a few years' time is an extraordinary accomplishment. It is also noteworthy in the global context: in developed countries, adherence to medication for chronic diseases in general averages only 50% [8]. Similarly, treatment completion rates for tuberculosis, which requires a temporary rather than permanent commitment to adherence and a less demanding dosing schedule, average 74% in the African region, with a range among countries from 22% to 94% [9]. Taken in the context of medication adherence in general, the record of African ART programs lies within the bounds of previous experience. At the same time, however, losing up to half of those who initiate ART within two years is cause for concern. From the data as reported, attrition averaged roughly 22% at 10 mo of follow-up. This average comprised mainly deaths (40% of attrition) and losses to follow-up (56%). In comparison, the ART-LINC Collaboration, which analyzed data from 18 cohorts across the developing world, reported loss to follow-up rates among the 13 sub-Saharan African cohorts averaging 15% (range 0%–44%) in the first year after initiation; mortality averaged 4.2% across all 18 cohorts (African regional rate not provided) [5]. On the basis of our survival and sensitivity analyses, we believe that actual attrition is higher than the 22% average we report, mainly because the programs with the highest attrition were least likely to provide data beyond the first 6 mo of ART. There are several plausible explanations for the higher attrition seen among programs with shorter durations of reporting. One possibility is that limited availability of resources to a given program could affect both its ability to retain patients and to conduct long-term surveillance of its outcomes. Another, less pessimistic explanation is that shorter durations of reporting reflect newer programs that are still in the process of developing optimal strategies for patient retention: had they reported at a later point in their implementation, retention rates might have been higher. The magnitude of the under-reporting bias is also uncertain, although our sensitivity analysis gives a plausible range between two implausible extremes (the best case being implausible because it assumes zero further attrition beyond the point of last reporting, and the worst case because it assumes that there will be constant attrition over time, rather than reaching a plateau or at least slowing substantially). The midpoint scenario suggests that approximately half of all patients started on ART were no longer on treatment at the end of two years. One of the principal challenges to this analysis is interpreting the large proportion of attrition from “loss to follow-up.” Some of these patients undoubtedly represent unrecorded deaths, but others may be patients who identified alternative sources for ART or had taken an extended “break” from therapy, to which they will return when their condition worsens again or they obtain the financial resources needed for transport or clinic fees. One study in Malawi discovered, for example, that 24% of patients originally recorded as lost to follow-up re-enrolled at the same site two years later when ART became free of charge [10]. For some of the studies included in this analysis, on the other hand, the unrecorded death explanation is more persuasive. For example, the Zambia 1 cohort of more than 16,000 patients reported 21% loss to follow-up after approximately 6 mo [11]. The scope and scale of this program means that it is the primary source of ART in Lusaka, making it unlikely that most of the estimated 3,300 lost patients could have found alternative sources of care. A recent attempt to trace lost-to-follow-up patients in Malawi determined that 50% had died, 27% could not be found, and most of the rest had stopped ART [12]. Because those reporting on these cohorts do not know what ultimately happened to patients categorized as lost to follow-up, high loss to follow-up rates can have varied interpretations. A good deal of research on barriers to adherence and reasons for treatment discontinuation has been published [13]. Important barriers to adherence include cost of drugs and/or transport, fear of disclosure or stigma, and side effects [14,15]. Some of these barriers can be addressed relatively easily, for example by providing transport vouchers to ensure that patients can attend the clinic; others, such as stigma, require more profound changes. In any case, high reported rates of loss to follow-up are a strong call to improve patient tracing procedures, to minimize the number of patients who fall into the difficult-to-address category of “lost, reason unknown.” Given that the long-term prognosis of ART patients is inversely related to starting CD4+ T cell counts [16,17], an additional issue to consider is the low median starting CD4+ cell counts reported by every one of the studies in this analysis. This problem has been identified previously, particularly in South Africa [18–20]. The analysis here makes clear that the problem is nearly universal in Africa and cuts across all types of treatment programs. It is evident in the high death rates reported by some studies after only a few months of follow-up, such as Malawi 3. There is a high degree of heterogeneity in retention rates between the different cohorts in our analysis and among categories of attrition. Some programs appear to have been highly successful in retaining patients, while others clearly struggled to do so. Some programs have suffered high mortality rates but low loss to follow-up, others the opposite. Early mortality, which may be largely due to the late stage at which many patients present for treatment, requires interventions different from those needed to address later loss to follow-up, about which very little is known. Interventions to address the various types of attrition must thus be tailored to local circumstances. The success of some programs with very high retention may provide examples that others can follow. The findings here can thus be seen as a part of an ongoing process to identify and solve problems within existing treatment programs, even as we expand their scope and launch new ones. Our analysis has a number of limitations, chiefly that incomplete reporting forced us to extrapolate some values. Extrapolating backward assumes that attrition rates are distributed linearly over time, which is unlikely to be the case. Evidence from this and other studies suggest that the highest attrition occurs during the first 6 mo. However, this limitation only pertains to the shape of the attrition curves, not to their final end points. Extrapolating forward, which we used only in the sensitivity analysis to establish the hypothetical “worst case” scenario, also suffers from this limitation, compounded by the fact that our confidence in the forward boundary is limited. In addition, our analysis is necessarily limited to publicly available reports and thus potentially subject to publication bias. Researchers may be less inclined to publish long-term outcomes from cohorts that have experienced very high early attrition. It is also likely that programs with better access to resources, both financial and human, are also better able to monitor, analyze, and publish their results. Our aggregate findings may thus represent the better-resourced programs in Africa. In conclusion, African ART programs are retaining about 60% of their patients in the first two years. This average masks a great deal of heterogeneity, however. At one end of the spectrum represented by the reviewed studies, two-year retention neared 90%; at the other end, attrition reached 50%. Better information on those who are lost to follow-up is urgently needed. Since losses to follow-up account for the majority of all attrition in more than half of the studies reviewed, the problem of attrition cannot be addressed effectively without better means to track patients. Only then can we address the pressing question of why patients drop out and what conditions, assistance, or incentives will be needed to retain them. Supporting Information Protocol S1 Search Protocol (85 KB DOC) Click here for additional data file.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mortality of Patients Lost to Follow-Up in Antiretroviral Treatment Programmes in Resource-Limited Settings: Systematic Review and Meta-Analysis

            Background The retention of patients in antiretroviral therapy (ART) programmes is an important issue in resource-limited settings. Loss to follow up can be substantial, but it is unclear what the outcomes are in patients who are lost to programmes. Methods and Findings We searched the PubMed, EMBASE, Latin American and Caribbean Health Sciences Literature (LILACS), Indian Medlars Centre (IndMed) and African Index Medicus (AIM) databases and the abstracts of three conferences for studies that traced patients lost to follow up to ascertain their vital status. Main outcomes were the proportion of patients traced, the proportion found to be alive and the proportion that had died. Where available, we also examined the reasons why some patients could not be traced, why patients found to be alive did not return to the clinic, and the causes of death. We combined mortality data from several studies using random-effects meta-analysis. Seventeen studies were eligible. All were from sub-Saharan Africa, except one study from India, and none were conducted in children. A total of 6420 patients (range 44 to 1343 patients) were included. Patients were traced using telephone calls, home visits and through social networks. Overall the vital status of 4021 patients could be ascertained (63%, range across studies: 45% to 86%); 1602 patients had died. The combined mortality was 40% (95% confidence interval 33%–48%), with substantial heterogeneity between studies (P<0.0001). Mortality in African programmes ranged from 12% to 87% of patients lost to follow-up. Mortality was inversely associated with the rate of loss to follow up in the programme: it declined from around 60% to 20% as the percentage of patients lost to the programme increased from 5% to 50%. Among patients not found, telephone numbers and addresses were frequently incorrect or missing. Common reasons for not returning to the clinic were transfer to another programme, financial problems and improving or deteriorating health. Causes of death were available for 47 deaths: 29 (62%) died of an AIDS defining illness. Conclusions In ART programmes in resource-limited settings a substantial minority of adults lost to follow up cannot be traced, and among those traced 20% to 60% had died. Our findings have implications both for patient care and the monitoring and evaluation of programmes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of point-of-care CD4 cell count tests on retention of patients and rates of antiretroviral therapy initiation in primary health clinics: an observational cohort study.

              Loss to follow-up of HIV-positive patients before initiation of antiretroviral therapy can exceed 50% in low-income settings and is a challenge to the scale-up of treatment. We implemented point-of-care counting of CD4 cells in Mozambique and assessed the effect on loss to follow-up before immunological staging and treatment initiation. In this observational cohort study, data for enrolment into HIV management and initiation of antiretroviral therapy were extracted retrospectively from patients' records at four primary health clinics providing HIV treatment and point-of-care CD4 services. Loss to follow-up and the duration of each preparatory step before treatment initiation were measured and compared with baseline data from before the introduction of point-of-care CD4 testing. After the introduction of point-of-care CD4 the proportion of patients lost to follow-up before completion of CD4 staging dropped from 57% (278 of 492) to 21% (92 of 437) (adjusted odds ratio [OR] 0·2, 95% CI 0·15-0·27). Total loss to follow-up before initiation of antiretroviral treatment fell from 64% (314 of 492) to 33% (142 of 437) (OR 0·27, 95% CI 0·21-0·36) and the proportion of enrolled patients initiating antiretroviral therapy increased from 12% (57 of 492) to 22% (94 of 437) (OR 2·05, 95% CI 1·42-2·96). The median time from enrolment to antiretroviral therapy initiation reduced from 48 days to 20 days (p<0·0001), primarily because of a reduction in the median time taken to complete CD4 staging, which decreased from 32 days to 3 days (p<0·0001). Loss to follow-up between staging and antiretroviral therapy initiation did not change significantly (OR 0·84, 95% CI 0·49-1·45). Point-of-care CD4 testing enabled clinics to stage patients rapidly on-site after enrolment, which reduced opportunities for pretreatment loss to follow-up. As a result, more patients were identified as eligible for and initiated antiretroviral treatment. Point-of-care testing might therefore be an effective intervention to reduce pretreatment loss to follow-up. Absolute Return for Kids and UNITAID. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                PLoS Med
                PLoS
                plosmed
                PLoS Medicine
                Public Library of Science (San Francisco, USA )
                1549-1277
                1549-1676
                September 2014
                16 September 2014
                : 11
                : 9
                Affiliations
                [1 ]Medical Practice Evaluation Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
                [2 ]Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
                [3 ]Division of General Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
                [4 ]Instituto Nacional da Saùde, Maputo, Mozambique
                [5 ]Clinton Health Access Initiative, Maputo, Mozambique
                [6 ]Desmond Tutu HIV Centre, Institute of Infectious Diseases and Molecular Medicine, and Department of Medicine, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
                [7 ]Harvard University Center for AIDS Research, Harvard Medical School, Boston, Massachusetts, United States of America
                [8 ]Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
                [9 ]Department of Health Policy and Management, Yale School of Public Health, New Haven, Connecticut, United States of America
                [10 ]Center for Health Decision Science, Harvard School of Public Health, Boston, Massachusetts, United States of America
                [11 ]Department of Health Policy and Management, Harvard School of Public Health, Boston, Massachusetts, United States of America
                [12 ]Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
                Centers for Disease Control and Prevention, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: EPH IVJ RPW. Performed the experiments: EPH AES. Analyzed the data: EPH IVJ JL AES JQ ADP TP RPW IVB. Contributed reagents/materials/analysis tools: EPH IVJ AES RW JQ SR PPP EL KAF RPW. Wrote the first draft of the manuscript: EPH. Wrote the paper: EPH IVJ JL AES RW JQ SR ADP IVB PPP EL KAF TP RPW. ICMJE criteria for authorship read and met: EPH IVJ JL AES RW JQ SR ADP IVB PPP EL KAF TP RPW. Agree with manuscript results and conclusions: EPH IVJ JL AES RW JQ SR ADP IVB PPP EL KAF TP RPW.

                Article
                PMEDICINE-D-14-01453
                10.1371/journal.pmed.1001725
                4165752
                25225800
                82c13f35-0074-4d11-ad49-000ed0177bc4

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Page count
                Pages: 15
                Funding
                This research has been supported by National Institute of Allergy and Infectious Disease [T32 AI 007433; R01 AI058736; R01 MH090326; R01 AI0932690]. This publication was made possible with help from the Harvard University Center for AIDS Research (CFAR), an NIH funded program (P30 AI060354), which is supported by the following NIH Co-Funding and Participating Institutes and Centers: NIAID, NCI, NICHD, NHLBI, NIDA, NIMH, NIA, FIC, and OAR. Additional funding was available from UK Department for International Development (DFID). This work was partially funded by Clinton Health Access Initiative(CHAI). CHAI was involved with original collection of data as published in the Lancet (Jani et al. Lancet 2011;378: 1572-9). Of the funders, only CHAI had a role in data analysis (as it related to input data from the original trial), decision to publish, and preparation of the manuscript. In advance of the analysis, CHAI agreed to full publication of any findings, regardless of the final outcome and conclusions.
                Categories
                Research Article
                Biology and Life Sciences
                Computational Biology
                Population Modeling
                Infectious Disease Modeling
                Medicine and health sciences
                Infectious diseases
                Viral diseases
                AIDS
                HIV infections
                Research and Analysis Methods
                Mathematical and Statistical Techniques
                Mathematical Models
                Social Sciences
                Economics
                Economic Analysis
                Cost-Effectiveness Analysis
                Custom metadata
                The authors confirm that, for approved reasons, some access restrictions apply to the data underlying the findings. Data are from the study, "Effect of point-of-care CD4 cell count tests on retention of patients and rates of antiretroviral therapy initiation in primary health clinics: an observational cohort study." Dr. Ilesh Jani can be contacted at ilesh.jani@ 123456gmail.com to provide access to the data.

                Medicine

                Comments

                Comment on this article