54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CXCR3-Dependent CD4 + T Cells Are Required to Activate Inflammatory Monocytes for Defense against Intestinal Infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chemokines and their receptors play a critical role in orchestrating immunity to microbial pathogens, including the orally acquired Th1-inducing protozoan parasite Toxoplasma gondii. Chemokine receptor CXCR3 is associated with Th1 responses, and here we use bicistronic CXCR3-eGFP knock-in reporter mice to demonstrate upregulation of this chemokine receptor on CD4 + and CD8 + T lymphocytes during Toxoplasma infection. We show a critical role for CXCR3 in resistance to the parasite in the intestinal mucosa. Absence of the receptor in Cxcr3 −/− mice resulted in selective loss of ability to control T. gondii specifically in the lamina propria compartment. CD4 + T cells were impaired both in their recruitment to the intestinal lamina propria and in their ability to secrete IFN-γ upon stimulation. Local recruitment of CD11b +Ly6C/G + inflammatory monocytes, recently reported to be major anti- Toxoplasma effectors in the intestine, was not impacted by loss of CXCR3. However, inflammatory monocyte activation status, as measured by dual production of TNF-α and IL-12, was severely impaired in Cxcr3 −/− mice. Strikingly, adoptive transfer of wild-type but not Ifnγ −/− CD4 + T lymphocytes into Cxcr3 −/− animals prior to infection corrected the defect in inflammatory macrophage activation, simultaneously reversing the susceptibility phenotype of the knockout animals. Our results establish a central role for CXCR3 in coordinating innate and adaptive immunity, ensuring generation of Th1 effectors and their trafficking to the frontline of infection to program microbial killing by inflammatory monocytes.

          Author Summary

          Inflammatory monocytes have recently emerged as important effectors in intestinal defense against enteric pathogens, but requirements for their activation are poorly defined. Here we use the protozoan Toxoplasma gondii, an orally acquired Th1-inducing pathogen, to study the requirements for inflammatory macrophage activation in the intestinal mucosa. We find that CD4 + T lymphocytes, recruited in dependence upon their expression of the chemokine receptor CXCR3, mediate activation of intestinal mucosa inflammatory monocytes via secretion of IFN-γ, in turn resulting in control of infection. Thus, CXCR3 functions as a critical lynchpin coordinating anti-microbial communication between T lymphocytes and inflammatory monocyte effectors.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          CXCR3 in T cell function.

          CXCR3 is a chemokine receptor that is highly expressed on effector T cells and plays an important role in T cell trafficking and function. CXCR3 is rapidly induced on naïve cells following activation and preferentially remains highly expressed on Th1-type CD4(+) T cells and effector CD8(+) T cells. CXCR3 is activated by three interferon-inducible ligands CXCL9 (MIG), CXCL10 (IP-10) and CXCL11 (I-TAC). Early studies demonstrated a role for CXCR3 in the trafficking of Th1 and CD8 T cells to peripheral sites of Th1-type inflammation and the establishment of a Th1 amplification loop mediated by IFNγ and the IFNγ-inducible CXCR3 ligands. More recent studies have also suggested that CXCR3 plays a role in the migration of T cells in the microenvironment of the peripheral tissue and lymphoid compartment, facilitating the interaction of T cells with antigen presenting cells leading to the generation of effector and memory cells. Copyright © 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection.

            Dendritic cells (DCs) present microbial antigens to T cells and provide inflammatory signals that modulate T cell differentiation. While the role of DCs in adaptive immunity is well established, their involvement in innate immune defenses is less well defined. We have identified a TNF/iNOS-producing (Tip)-DC subset in spleens of Listeria monocytogenes-infected mice that is absent from CCR2-deficient mice. The absence of Tip-DCs results in profound TNF and iNOS deficiencies and an inability to clear primary bacterial infection. CD8 and CD4 T cell responses to L. monocytogenes antigens are preserved in CCR2-deficient mice, indicating that Tip-DCs are not essential for T cell priming. Tip-DCs, as the predominant source of TNF and iNOS during L. monocytogenes infection, orchestrate and mediate innate immune defense against this intracellular bacterial pathogen.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phenotypic and Functional Separation of Memory and Effector Human CD8+ T Cells

              Human CD8+ memory- and effector-type T cells are poorly defined. We show here that, next to a naive compartment, two discrete primed subpopulations can be found within the circulating human CD8+ T cell subset. First, CD45RA−CD45R0+ cells are reminiscent of memory-type T cells in that they express elevated levels of CD95 (Fas) and the integrin family members CD11a, CD18, CD29, CD49d, and CD49e, compared to naive CD8+ T cells, and are able to secrete not only interleukin (IL) 2 but also interferon γ, tumor necrosis factor α, and IL-4. This subset does not exert cytolytic activity without prior in vitro stimulation but does contain virus-specific cytotoxic T lymphocyte (CTL) precursors. A second primed population is characterized by CD45RA expression with concomitant absence of expression of the costimulatory molecules CD27 and CD28. The CD8+CD45RA+CD27− population contains T cells expressing high levels of CD11a, CD11b, CD18, and CD49d, whereas CD62L (L-selectin) is not expressed. These T cells do not secrete IL-2 or -4 but can produce IFN-γ and TNF-α. In accordance with this finding, cells contained within this subpopulation depend for proliferation on exogenous growth factors such as IL-2 and -15. Interestingly, CD8+CD45RA+CD27− cells parallel effector CTLs, as they abundantly express Fas-ligand mRNA, contain perforin and granzyme B, and have high cytolytic activity without in vitro prestimulation. Based on both phenotypic and functional properties, we conclude that memory- and effector-type T cells can be separated as distinct entities within the human CD8+ T cell subset.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                October 2013
                October 2013
                10 October 2013
                : 9
                : 10
                : e1003706
                Affiliations
                [1 ]Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
                [2 ]Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
                [3 ]Center for Animal Resources and Education, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
                [4 ]Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, United States of America
                Washington University School of Medicine, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SBC EYD. Performed the experiments: SBC CEE. Analyzed the data: SBC KJM CEE ARS EYD. Contributed reagents/materials/analysis tools: SO ARS. Wrote the paper: SBC EYD.

                [¤a]

                Current address: Center for Comparative Medicine and Research, Dartmouth College, Lebanon, New Hampshire, United States of America

                [¤b]

                Current address: Department of Surgery, Division of Pediatric Surgery, Children's Hospital of Pittsburgh of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America

                Article
                PPATHOGENS-D-13-01169
                10.1371/journal.ppat.1003706
                3795032
                24130498
                82c6603e-6bb2-4383-b8e4-4b16cf126bcd
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 May 2013
                : 28 August 2013
                Page count
                Pages: 14
                Funding
                This work was supported by National Institutes of Health grants AI50617 (EYD) and AI83526 (EYD), AI090231 (ARS), and a Cornell University Vertebrate Genomics scholarship (SBC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article