27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Probing Genomic Aspects of the Multi-Host Pathogen Clostridium perfringens Reveals Significant Pangenome Diversity, and a Diverse Array of Virulence Factors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Clostridium perfringens is an important cause of animal and human infections, however information about the genetic makeup of this pathogenic bacterium is currently limited. In this study, we sought to understand and characterise the genomic variation, pangenomic diversity, and key virulence traits of 56 C. perfringens strains which included 51 public, and 5 newly sequenced and annotated genomes using Whole Genome Sequencing. Our investigation revealed that C. perfringens has an “open” pangenome comprising 11667 genes and 12.6% of core genes, identified as the most divergent single-species Gram-positive bacterial pangenome currently reported. Our computational analyses also defined C. perfringens phylogeny (16S rRNA gene) in relation to some 25 Clostridium species, with C. baratii and C. sardiniense determined to be the closest relatives. Profiling virulence-associated factors confirmed presence of well-characterised C. perfringens-associated exotoxins genes including α-toxin ( plc), enterotoxin ( cpe), and Perfringolysin O ( pfo or pfoA), although interestingly there did not appear to be a close correlation with encoded toxin type and disease phenotype. Furthermore, genomic analysis indicated significant horizontal gene transfer events as defined by presence of prophage genomes, and notably absence of CRISPR defence systems in >70% (40/56) of the strains. In relation to antimicrobial resistance mechanisms, tetracycline resistance genes ( tet) and anti-defensins genes ( mprF) were consistently detected in silico ( tet: 75%; mprF: 100%). However, pre-antibiotic era strain genomes did not encode for tet, thus implying antimicrobial selective pressures in C. perfringens evolutionary history over the past 80 years. This study provides new genomic understanding of this genetically divergent multi-host bacterium, and further expands our knowledge on this medically and veterinary important pathogen.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.

          Molecular structures and sequences are generally more revealing of evolutionary relationships than are classical phenotypes (particularly so among microorganisms). Consequently, the basis for the definition of taxa has progressively shifted from the organismal to the cellular to the molecular level. Molecular comparisons show that life on this planet divides into three primary groupings, commonly known as the eubacteria, the archaebacteria, and the eukaryotes. The three are very dissimilar, the differences that separate them being of a more profound nature than the differences that separate typical kingdoms, such as animals and plants. Unfortunately, neither of the conventionally accepted views of the natural relationships among living systems--i.e., the five-kingdom taxonomy or the eukaryote-prokaryote dichotomy--reflects this primary tripartite division of the living world. To remedy this situation we propose that a formal system of organisms be established in which above the level of kingdom there exists a new taxon called a "domain." Life on this planet would then be seen as comprising three domains, the Bacteria, the Archaea, and the Eucarya, each containing two or more kingdoms. (The Eucarya, for example, contain Animalia, Plantae, Fungi, and a number of others yet to be defined). Although taxonomic structure within the Bacteria and Eucarya is not treated herein, Archaea is formally subdivided into the two kingdoms Euryarchaeota (encompassing the methanogens and their phenotypically diverse relatives) and Crenarchaeota (comprising the relatively tight clustering of extremely thermophilic archaebacteria, whose general phenotype appears to resemble most the ancestral phenotype of the Archaea.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Staphylococcus aureus Resistance to Human Defensins and Evasion of Neutrophil Killing via the Novel Virulence Factor Mprf Is Based on Modification of Membrane Lipids with l-Lysine

            Defensins, antimicrobial peptides of the innate immune system, protect human mucosal epithelia and skin against microbial infections and are produced in large amounts by neutrophils. The bacterial pathogen Staphylococcus aureus is insensitive to defensins by virtue of an unknown resistance mechanism. We describe a novel staphylococcal gene, mprF, which determines resistance to several host defense peptides such as defensins and protegrins. An mprF mutant strain was killed considerably faster by human neutrophils and exhibited attenuated virulence in mice, indicating a key role for defensin resistance in the pathogenicity of S. aureus. Analysis of membrane lipids demonstrated that the mprF mutant no longer modifies phosphatidylglycerol with l-lysine. As this unusual modification leads to a reduced negative charge of the membrane surface, MprF-mediated peptide resistance is most likely based on repulsion of the cationic peptides. Accordingly, inactivation of mprF led to increased binding of antimicrobial peptides by the bacteria. MprF has no similarity with genes of known function, but related genes were identified in the genomes of several pathogens including Mycobacterium tuberculosis, Pseudomonas aeruginosa, and Enterococcus faecalis. MprF thus constitutes a novel virulence factor, which may be of general relevance for bacterial pathogens and represents a new target for attacking multidrug resistant bacteria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice.

              Shiga toxin-producing Escherichia coli (STEC) cause significant disease; treatment is supportive and antibiotic use is controversial. Ciprofloxacin but not fosfomycin causes Shiga toxin-encoding bacteriophage induction and enhanced Shiga toxin (Stx) production from E. coli O157:H7 in vitro. The potential clinical relevance of this was examined in mice colonized with E. coli O157:H7 and given either ciprofloxacin or fosfomycin. Both antibiotics caused a reduction in fecal STEC. However, animals treated with ciprofloxacin had a marked increase in free fecal Stx, associated with death in two-thirds of the mice, whereas fosfomycin did not. Experiments that used a kanamycin-marked Stx2 prophage demonstrated that ciprofloxacin, but not fosfomycin, caused enhanced intraintestinal transfer of Stx2 prophage from one E. coli to another. These observations suggest that treatment of human STEC infection with bacteriophage-inducing antibiotics, such as fluoroquinolones, may have significant adverse clinical consequences and that fluoroquinolone antibiotics may enhance the movement of virulence factors in vivo.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                12 December 2017
                2017
                : 8
                : 2485
                Affiliations
                [1] 1Gut Health and Food Safety, Quadram Institute Bioscience, Norwich Research Park , Norwich, United Kingdom
                [2] 2Norwich Medical School, University of East Anglia, Norwich Research Park , Norwich, United Kingdom
                [3] 3Public Health England , London, United Kingdom
                [4] 4Earlham Institute, Norwich Research Park , Norwich, United Kingdom
                Author notes

                Edited by: Frank T. Robb, University of Maryland, Baltimore, United States

                Reviewed by: Nikolai Ravin, Research Center for Biotechnology of Russian Academy of Sciences, Russia; Karl Hassan, University of Newcastle, Australia

                *Correspondence: Lindsay J. Hall lindsay.hall@ 123456quadram.ac.uk

                This article was submitted to Evolutionary and Genomic Microbiology, a section of the journal Frontiers in Microbiology

                †These authors have contributed equally to this work and shared first authorship.

                Article
                10.3389/fmicb.2017.02485
                5733095
                29312194
                82d6619c-9812-4e10-a028-5643a038ef3e
                Copyright © 2017 Kiu, Caim, Alexander, Pachori and Hall.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 August 2017
                : 29 November 2017
                Page count
                Figures: 5, Tables: 3, Equations: 0, References: 98, Pages: 18, Words: 10655
                Funding
                Funded by: Wellcome Trust 10.13039/100004440
                Award ID: 100974/C/13/Z
                Funded by: Biotechnology and Biological Sciences Research Council 10.13039/501100000268
                Award ID: BB/J004529/1
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                clostridium perfringens,pangenome,antimicrobial resistance,genomics,whole genome sequencing,clostridial infection,exotoxins

                Comments

                Comment on this article