8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanisms and therapeutic targets of ischemic acute kidney injury

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acute kidney injury (AKI) due to renal ischemia reperfusion (IR) is a major clinical problem without effective therapy and is a significant and frequent cause of morbidity and mortality during the perioperative period. Although the pathophysiology of ischemic AKI is not completely understood, several important mechanisms of renal IR-induced AKI have been studied. Renal ischemia and subsequent reperfusion injury initiates signaling cascades mediating renal cell necrosis, apoptosis, and inflammation, leading to AKI. Better understanding of the molecular and cellular pathophysiological mechanisms underlying ischemic AKI will provide more targeted approach to prevent and treat renal IR injury. In this review, we summarize important mechanisms of ischemic AKI, including renal cell death pathways and the contribution of endothelial cells, epithelial cells, and leukocytes to the inflammatory response during ischemic AKI. Additionally, we provide some updated potential therapeutic targets for the prevention or treatment of ischemic AKI, including Toll-like receptors, adenosine receptors, and peptidylarginine deiminase 4. Finally, we propose mechanisms of ischemic AKI-induced liver, intestine, and kidney dysfunction and systemic inflammation mainly mediated by Paneth cell degranulation as a potential explanation for the high mortality observed with AKI.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Pathophysiology of ischemic acute kidney injury.

          Acute kidney injury (AKI) as a consequence of ischemia is a common clinical event leading to unacceptably high morbidity and mortality, development of chronic kidney disease (CKD), and transition from pre-existing CKD to end-stage renal disease. Data indicate a close interaction between the many cell types involved in the pathophysiology of ischemic AKI, which has critical implications for the treatment of this condition. Inflammation seems to be the common factor that links the various cell types involved in this process. In this Review, we describe the interactions between these cells and their response to injury following ischemia. We relate these events to patients who are at high risk of AKI, and highlight the characteristics that might predispose these patients to injury. We also discuss how therapy targeting specific cell types can minimize the initial and subsequent injury following ischemia, thereby limiting the extent of acute changes and, hopefully, long-term structural and functional alterations to the kidney.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Apoptosis and acute kidney injury.

            Improved mechanistic understanding of renal cell death in acute kidney injury (AKI) has generated new therapeutic targets. Clearly, the classic lesion of acute tubular necrosis is not adequate to describe the consequences of renal ischemia, nephrotoxin exposure, or sepsis on glomerular filtration rate. Experimental evidence supports a pathogenic role for apoptosis in AKI. Interestingly, proximal tubule epithelial cells are highly susceptible to apoptosis, and injury at this site contributes to organ failure. During apoptosis, well-orchestrated events converge at the mitochondrion, the organelle that integrates life and death signals generated by the BCL2 (B-cell lymphoma 2) protein family. Death requires the 'perfect storm' for outer mitochondrial membrane injury to release its cellular 'executioners'. The complexity of this process affords new targets for effective interventions, both before and after renal insults. Inhibiting apoptosis appears to be critical, because circulating factors released by the injured kidney induce apoptosis and inflammation in distant organs including the heart, lung, liver, and brain, potentially contributing to the high morbidity and mortality associated with AKI. Manipulation of known stress kinases upstream of mitochondrial injury, induction of endogenous, anti-apoptotic proteins, and improved understanding of the timing and consequences of renal cell apoptosis will inevitably improve the outcome of human AKI.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury.

              Regulated necrosis (RN) may result from cyclophilin (Cyp)D-mediated mitochondrial permeability transition (MPT) and receptor-interacting protein kinase (RIPK)1-mediated necroptosis, but it is currently unclear whether there is one common pathway in which CypD and RIPK1 act in or whether separate RN pathways exist. Here, we demonstrate that necroptosis in ischemia-reperfusion injury (IRI) in mice occurs as primary organ damage, independent of the immune system, and that mice deficient for RIPK3, the essential downstream partner of RIPK1 in necroptosis, are protected from IRI. Protection of RIPK3-knockout mice was significantly stronger than of CypD-deficient mice. Mechanistically, in vivo analysis of cisplatin-induced acute kidney injury and hyperacute TNF-shock models in mice suggested the distinctness of CypD-mediated MPT from RIPK1/RIPK3-mediated necroptosis. We, therefore, generated CypD-RIPK3 double-deficient mice that are viable and fertile without an overt phenotype and that survived prolonged IRI, which was lethal to each single knockout. Combined application of the RIPK1 inhibitor necrostatin-1 and the MPT inhibitor sanglifehrin A confirmed the results with mutant mice. The data demonstrate the pathophysiological coexistence and corelevance of two separate pathways of RN in IRI and suggest that combination therapy targeting distinct RN pathways can be beneficial in the treatment of ischemic injury.
                Bookmark

                Author and article information

                Journal
                Kidney Res Clin Pract
                Kidney Res Clin Pract
                Kidney Research and Clinical Practice
                Korean Society of Nephrology
                2211-9132
                2211-9140
                December 2019
                31 December 2019
                : 38
                : 4
                : 427-440
                Affiliations
                Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
                Author notes
                Correspondence: H. Thomas Lee, Director of Transplantation Anesthesiology, Department of Anesthesiology, Anesthesiology Research Laboratories, Columbia University, P&S Box 46 (PH-5), 630 West 168th Street, New York, NY 10032, USA. E-mail: tl128@ 123456columbia.edu . Sang Jun Han, Department of Anesthesiology, Anesthesiology Research Laboratories, Columbia University, P&S Box 46 (PH-5), 630 West 168th Street, New York, NY 10032, USA. E-mail: kshlove43@ 123456nate.com
                [*]

                Sang Jun Han and H. Thomas Lee contributed equally to this work.

                Edited by Gheun-Ho Kim, Hanyang University, Seoul, Republic of Korea

                Author information
                https://orcid.org/0000-0002-5425-9056
                https://orcid.org/0000-0002-4367-7594
                Article
                krcp-38-427
                10.23876/j.krcp.19.062
                6913588
                31537053
                82d6a626-ef9b-4949-b121-82f1765d2eb7
                Copyright © 2019 by The Korean Society of Nephrology

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 01 June 2019
                : 13 July 2019
                : 17 July 2019
                Categories
                Review Article

                acute kidney injury,apoptosis,inflammation,ischemia reperfusion injury,mechanism,necrosis

                Comments

                Comment on this article