13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Disease-Dependent Local IL-10 Production Ameliorates Collagen Induced Arthritis in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rheumatoid arthritis (RA) is a chronic destructive autoimmune disease characterised by periods of flare and remission. Today’s treatment is based on continuous immunosuppression irrespective of the patient’s inflammatory status. When the disease is in remission the therapy is withdrawn but withdrawal attempts often results in inflammatory flares, and re-start of the therapy is commenced when the inflammation again is prominent which leads both to suffering and increased risk of tissue destruction. An attractive alternative treatment would provide a disease-regulated therapy that offers increased anti-inflammatory effect during flares and is inactive during periods of remission. To explore this concept we expressed the immunoregulatory cytokine interleukin (IL)-10 gene under the control of an inflammation dependent promoter in a mouse model of RA - collagen type II (CII) induced arthritis (CIA). Haematopoetic stem cells (HSCs) were transduced with lentiviral particles encoding the IL-10 gene (LNT-IL-10), or a green fluorescence protein (GFP) as control gene (LNT-GFP), driven by the inflammation-dependent IL-1/IL-6 promoter. Twelve weeks after transplantation of transduced HSCs into DBA/1 mice, CIA was induced. We found that LNT-IL-10 mice developed a reduced severity of arthritis compared to controls. The LNT-IL-10 mice exhibited both increased mRNA expression levels of IL-10 as well as increased amount of IL-10 produced by B cells and non-B APCs locally in the lymph nodes compared to controls. These findings were accompanied by increased mRNA expression of the IL-10 induced suppressor of cytokine signalling 1 (SOCS1) in lymph nodes and a decrease in the serum protein levels of IL-6. We also found a decrease in both frequency and number of B cells and serum levels of anti-CII antibodies. Thus, inflammation-dependent IL-10 therapy suppresses experimental autoimmune arthritis and is a promising candidate in the development of novel treatments for RA.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Biology of interleukin-10.

          Interleukin (IL)-10 is the most important cytokine with anti-inflammatory properties besides TGF-β and IL-35. It is produced by activated immune cells, in particular monocytes/macrophages and T cell subsets including Tr1, Treg, and Th1 cells. IL-10 acts through a transmembrane receptor complex, which is composed of IL-10R1 and IL-10R2, and regulates the functions of many different immune cells. In monocytes/macrophages, IL-10 diminishes the production of inflammatory mediators and inhibits antigen presentation, although it enhances their uptake of antigens. Additionally, IL-10 plays an important role in the biology of B cells and T cells. The special physiological relevance of this cytokine lies in the prevention and limitation of over-whelming specific and unspecific immune reactions and, in consequence, of tissue damage. At the same time, IL-10 strengthens the "scavenger"-function and contributes to induced tolerance. This review provides an overview about the cellular sources, molecular mechanisms, effects, and biological role of IL-10. Copyright © 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inhibition of Th1 differentiation by IL-6 is mediated by SOCS1.

            Interleukin 6 (IL-6) is a cytokine produced by immune and nonimmune cells and exhibits functional pleiotropy and redundancy. IL-6 plays an important role in the differentiation of several cell types. Here, we describe a novel function of IL-6: the negative regulation of CD4+ Th1 cell differentiation. While IL-6-directed CD4+ Th2 differentiation is mediated by IL-4, inhibition of Th1 differentiation by IL-6 is independent of IL-4. IL-6 upregulates suppressor of cytokine signaling 1 (SOCS1) expression in activated CD4+ T cells, thereby interfering with signal transducer and activator of transcription 1 (STAT1) phosphorylation induced by interferon gamma (IFNgamma). Inhibition of IFNgamma receptor-mediated signals by IL-6 prevents autoregulation of IFNgamma gene expression by IFNgamma during CD4+ T cell activation, thereby preventing Th1 differentiation. Thus, IL-6 promotes CD4+ Th2 differentiation and inhibits Th1 differentiation by two independent molecular mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Roles of Interleukin-6 in the Pathogenesis of Rheumatoid Arthritis

              Several clinical studies have demonstrated that the humanized anti-interleukin-6 (IL-6) receptor antibody tocilizumab (TCZ) improves clinical symptoms and prevents progression of joint destruction in rheumatoid arthritis (RA). However, the precise mechanism by which IL-6 blockade leads to the improvement of RA is not well understood. IL-6 promotes synovitis by inducing neovascularization, infiltration of inflammatory cells, and synovial hyperplasia. IL-6 causes bone resorption by inducing osteoclast formation via the induction of RANKL in synovial cells, and cartilage degeneration by producing matrix metalloproteinases (MMPs) in synovial cells and chondrocytes. Moreover, IL-6 is involved in autoimmunity by altering the balance between Th17 cells and Treg. IL-6 also acts on changing lipid concentrations in blood and on inducing the production of hepcidin which causes iron-deficient anemia. In conclusion, IL-6 is a major player in the pathogenesis of RA, and current evidence indicates that the blockade of IL-6 is a beneficial therapy for RA patients.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                16 November 2012
                : 7
                : 11
                : e49731
                Affiliations
                [1 ]Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
                [2 ]Sahlgrenska Center for Cardiovascular and Metabolic Research, Wallenberg Laboratory, Sahlgrenska University hospital, Gothenburg, Sweden
                [3 ]Rheumatology Research and Advanced Therapeutics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
                University Hospital Jena, Germany
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: IG LH. Performed the experiments: LH TE PJ IG ST UL. Analyzed the data: LH TE IG FvdL. Contributed reagents/materials/analysis tools: UL. Wrote the paper: LH TE IG WvdB FvdL.

                Article
                PONE-D-12-16331
                10.1371/journal.pone.0049731
                3500327
                23166758
                82dc0710-526c-401a-9f91-d6f4944d4966
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 7 June 2012
                : 17 October 2012
                Page count
                Pages: 9
                Funding
                This study was supported by grants from the Swedish Science Council (Project No K2007-52X-20310-01-4, K2007-52P-20314-01-4), Göteborgs Läkaresällskap (the Gothenburg Medical society), King Gustav V’s 80 year Foundation, Reumatikerförbundet in Göteborg, Almlöv’s Foundation, Professor Nanna Svartz Foundation, Thölen and Kristler Foundation, IngaBritt and Arne Lundgren Foundation, the Swedish Foundation for Strategic Research, the 6th Framework Program of the EuropeanUnion, NeuroproMiSe, LSHM-CT-2005-01863, AUTOCURE, LSHM-CT-2005-018661. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Immunology
                Immune Cells
                T Cells
                Model Organisms
                Animal Models
                Mouse
                Medicine
                Clinical Immunology
                Autoimmune Diseases
                Rheumatoid Arthritis
                Immune System
                Cytokines
                Immune Response
                Rheumatology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article