23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Trampling as a cause of bone surface damage and pseudo-cutmarks

      , ,
      Nature
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: not found

          Taphonomic and ecologic information from bone weathering

          Bones of recent mammals in the Amboseli Basin, southern Kenya, exhibit distinctive weathering characteristics that can be related to the time since death and to the local conditions of temperature, humidity and soil chemistry. A categorization of weathering characteristics into six stages, recognizable on descriptive criteria, provides a basis for investigation of weathering rates and processes. The time necessary to achieve each successive weathering stage has been calibrated using known-age carcasses. Most bones decompose beyond recognition in 10 to 15 yr. Bones of animals under 100 kg and juveniles appear to weather more rapidly than bones of large animals or adults. Small-scale rather than widespread environmental factors seem to have greatest influence on weathering characteristics and rates. Bone weathering is potentially valuable as evidence for the period of time represented in recent or fossil bone assemblages, including those on archeological sites, and may also be an important tool in censusing populations of animals in modern ecosystems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Disarticulation and scattering of mammal skeletons

            I present a statistical technique for determining the disarticulation sequence of vertebrate skeletons based on the relative numbers of different intact joints in an assemblage of bones. For remains of modern Topi (Damaliscus korrigum) on the margin of Lake Turkana, northern Kenya, the disarticulation pattern is very consistent. This sequence, on dry land, differs from that reported for bovids that have disarticulated in the presence of water. On land the bones first released as single bones are those moved least easily by currents of moving water. The last released are those moved most easily. I develop a model of random scattering that suggests that the rate of dispersion is great at high concentrations of bones and decreases rapidly as the distance between bones increases. This leads to a condition where scattering effectively stops. The area of more or less stabilised dispersion is dependent only upon the mean distance that each random event moves a bone. Tests show that it is unlikely that articulated units themselves are much involved in scattering, and scattering appears to take place throughout the course of disarticulation.
              Bookmark

              Author and article information

              Journal
              Nature
              Nature
              Springer Nature
              0028-0836
              1476-4687
              February 1986
              February 1986
              : 319
              : 6056
              : 768-771
              Article
              10.1038/319768a0
              82e6d081-5bf4-44b1-8965-60d3155930a2
              © 1986

              http://www.springer.com/tdm

              History

              Comments

              Comment on this article