37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Host-Defense Peptides with Therapeutic Potential from Skin Secretions of Frogs from the Family Pipidae

      review-article
        * ,
      Pharmaceuticals
      MDPI
      frog skin, magainin, PGLa, caerulein-precursor fragment, xenopsin-precursor-fragment, hymenochirin

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Skin secretions from frogs belonging to the genera Xenopus, Silurana, Hymenochirus, and Pseudhymenochirus in the family Pipidae are a rich source of host-defense peptides with varying degrees of antimicrobial activities and cytotoxicities to mammalian cells. Magainin, peptide glycine-leucine-amide (PGLa), caerulein-precursor fragment (CPF), and xenopsin-precursor fragment (XPF) peptides have been isolated from norepinephrine-stimulated skin secretions from several species of Xenopus and Silurana. Hymenochirins and pseudhymenochirins have been isolated from Hymenochirus boettgeri and Pseudhymenochirus merlini. A major obstacle to the development of these peptides as anti-infective agents is their hemolytic activities against human erythrocytes. Analogs of the magainins, CPF peptides and hymenochirin-1B with increased antimicrobial potencies and low cytotoxicities have been developed that are active (MIC < 5 μM) against multidrug-resistant clinical isolates of Staphylococcus aureus, Escherichia coli, Acinetobacter baumannii, Stenotrophomonas maltophilia and Klebsiella pneumoniae. Despite this, the therapeutic potential of frog skin peptides as anti-infective agents has not been realized so that alternative clinical applications as anti-cancer, anti-viral, anti-diabetic, or immunomodulatory drugs are being explored.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Global patterns of diversification in the history of modern amphibians.

          The fossil record of modern amphibians (frogs, salamanders, and caecilians) provides no evidence for major extinction or radiation episodes throughout most of the Mesozoic and early Tertiary. However, long-term gradual diversification is difficult to reconcile with the sensitivity of present-day amphibian faunas to rapid ecological changes and the incidence of similar environmental perturbations in the past that have been associated with high turnover rates in other land vertebrates. To provide a comprehensive overview of the history of amphibian diversification, we constructed a phylogenetic timetree based on a multigene data set of 3.75 kb for 171 species. Our analyses reveal several episodes of accelerated amphibian diversification, which do not fit models of gradual lineage accumulation. Global turning points in the phylogenetic and ecological diversification occurred after the end-Permian mass extinction and in the late Cretaceous. Fluctuations in amphibian diversification show strong temporal correlation with turnover rates in amniotes and the rise of angiosperm-dominated forests. Approximately 86% of modern frog species and >81% of salamander species descended from only five ancestral lineages that produced major radiations in the late Cretaceous and early Tertiary. This proportionally late accumulation of extant lineage diversity contrasts with the long evolutionary history of amphibians but is in line with the Tertiary increase in fossil abundance toward the present.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor.

            M. Zasloff (1987)
            A family of peptides with broad-spectrum antimicrobial activity has been isolated from the skin of the African clawed frog Xenopus laevis. It consists of two closely related peptides that are each 23 amino acids and differ by two substitutions. These peptides are water soluble, nonhemolytic at their effective antimicrobial concentrations, and potentially amphiphilic. At low concentrations they inhibit growth of numerous species of bacteria and fungi and induce osmotic lysis of protozoa. The sequence of a partial cDNA of the precursor reveals that both peptides derive from a common larger protein. These peptides appear to represent a previously unrecognized class of vertebrate antimicrobial activities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multifunctional cationic host defence peptides and their clinical applications.

              With the rapid rise in the emergence of bacterial strains resistant to multiple classes of antimicrobial agents, there is an urgent need to develop novel antimicrobial therapies to combat these pathogens. Cationic host defence peptides (HDPs) and synthetic derivatives termed innate defence regulators (IDRs) represent a promising alternative approach in the treatment of microbial-related diseases. Cationic HDPs (also termed antimicrobial peptides) have emerged from their origins as nature's antibiotics and are widely distributed in organisms from insects to plants to mammals and non-mammalian vertebrates. Although their original and primary function was proposed to be direct antimicrobial activity against bacteria, fungi, parasites and/or viruses, cationic HDPs are becoming increasingly recognized as multifunctional mediators, with both antimicrobial activity and diverse immunomodulatory properties. Here we provide an overview of the antimicrobial and immunomodulatory activities of cationic HDPs, and discuss their potential application as beneficial therapeutics in overcoming infectious diseases.
                Bookmark

                Author and article information

                Journal
                Pharmaceuticals (Basel)
                Pharmaceuticals (Basel)
                pharmaceuticals
                Pharmaceuticals
                MDPI
                1424-8247
                15 January 2014
                January 2014
                : 7
                : 1
                : 58-77
                Affiliations
                Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE; E-Mail: mpanteva@ 123456uaeu.ac.ae
                Author notes
                [* ] Author to whom correspondence should be addressed; E-Mail: jmconlon@ 123456uaeu.ac.ae ; Tel.: +971-3-713-7484; Fax: +971-3-767-2033.
                Article
                pharmaceuticals-07-00058
                10.3390/ph7010058
                3915195
                24434793
                82fa4c0a-a4e7-477c-b2c1-6953d90ff160
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 09 December 2013
                : 07 January 2014
                : 08 January 2014
                Categories
                Review

                caerulein-precursor fragment,frog skin,xenopsin-precursor-fragment,pgla,magainin,hymenochirin

                Comments

                Comment on this article