7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Polypyrrole Nanotube Embedded Reduced Graphene Oxide Transducer for Field-Effect Transistor-Type H2O2 Biosensor

      , , , ,
      Analytical Chemistry
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report a rapid-response and high-sensitivity sensor with specificity toward H2O2 based on a liquid-ion-gated field-effect transistor (FET) using graphene-polypyrrole (PPy) nanotube (NT) composites as the conductive channel. The rGO, PPy, NTs, and nanocomposite materials were characterized using Raman spectroscopy, Fourier transform-infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). On the basis of these results, a well-organized structure is successfully prepared owing to the specific interactions between the PPy NTs and the rGO sheet. Reliable electrical contacts were developed between the rGO/PPy NTs and the microelectrodes, which remained stable when exposed to the liquid-phase analyte. Liquid-ion-gated FETs composed of these graphene nanocomposites exhibited hole-transport behavior with conductivities higher than those of rGO sheets or PPy NTs. This implies an interaction between the PPy NTs and the rGO layers, which is explained in terms of the PPy NTs forming a bridge between the rGO layers. The FET sensor provided a rapid response in real time and high sensitivity toward H2O2 with a limit of detection of 100 pM. The FET-type biosensing geometry was also highly reproducible and stable in air. Furthermore, the liquid-gated FET-type sensor exhibited specificity toward H2O2 in a mixed solution containing compounds found in biological fluids.

          Related collections

          Author and article information

          Journal
          Analytical Chemistry
          Anal. Chem.
          American Chemical Society (ACS)
          0003-2700
          1520-6882
          January 24 2014
          January 10 2014
          : 86
          : 3
          : 1822-1828
          Article
          10.1021/ac403770x
          24410346
          82fdf104-708f-45c8-90e4-4f071e96d8ee
          © 2014
          History

          Comments

          Comment on this article