113
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      KRAB-containing zinc-finger repressor proteins

      research-article
      1 ,
      Genome Biology
      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The largest family of zinc-finger transcription factors comprises those containing the Krüppel-associated box (or KRAB domain). The KRAB domain behaves as a transcriptional repressor domain and the C 2H 2 zinc-finger motifs bind DNA. Members of the family are involved in maintenance of the nucleolus, cell differentiation, cell proliferation, apoptosis, and neoplastic transformation.

          Abstract

          The largest family of zinc-finger transcription factors comprises those containing the Krüppel-associated box (or KRAB domain), which are present only in tetrapod vertebrates. Many genes encoding KRAB-containing proteins are arranged in clusters in the human genome, with one cluster close to chromosome 9ql3 and others in centromeric and telomeric regions of other chromosomes, but other genes occur individually throughout the genome. The KRAB domain, which is found in the amino-terminal region of the proteins, behaves as a transcriptional repressor domain by binding to corepressor proteins, whereas the C 2H 2 zinc-finger motifs bind DNA. The functions currently proposed for members of the KRAB-containing protein family include transcriptional repression of RNA polymerase I, II, and III promoters and binding and splicing of RNA. Members of the family are involved in maintenance of the nucleolus, cell differentiation, cell proliferation, apoptosis, and neoplastic transformation.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          KAP-1, a novel corepressor for the highly conserved KRAB repression domain.

          The KRAB repression domain is one of the most widely distributed transcriptional effector domains yet identified, but its mechanism of repression is unknown. We have cloned a corepressor, KAP-1, which associates with the KRAB domain but not with KRAB mutants that have lost repression activity. KAP-1 can enhance KRAB-mediated repression and is a repressor when directly tethered to DNA. KAP-1 contains a RING finger, B boxes, and a PHD finger; the RING-B1-B2 structure is required for KRAB binding and corepression. We propose that KAP-1 may be a universal corepressor for the large family of KRAB domain-containing transcription factors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD.

            Macromolecular complexes containing histone deacetylase and ATPase activities regulate chromatin dynamics and are vitally responsible for transcriptional gene silencing in eukaryotes. The mechanisms that target these assemblies to specific loci are not as well understood. We show that the corepressor KAP-1, via its PHD (plant homeodomain) and bromodomain, links the superfamily of Krüppel associated box (KRAB) zinc finger proteins (ZFP) to the NuRD complex. We demonstrate that the tandem PHD finger and bromodomain of KAP-1, an arrangement often found in cofactor proteins but functionally ill-defined, form a cooperative unit that is required for transcriptional repression. Substitution of highly related PHD fingers or bromodomains failed to restore repression activity, suggesting high specificity in their cooperative function. Moreover, single amino acid substitutions in either the bromodomain or PHD finger, including ones that mimic disease-causing mutations in the hATRX PHD finger, abolish repression. A search for effectors of this repression function yielded a novel isoform of the Mi-2alpha protein, an integral component of the NuRD complex. Endogenous KAP-1 is associated with Mi-2alpha and other components of NuRD, and KAP-1-mediated silencing requires association with NuRD and HDAC activity. These data suggest the KRAB-ZFP superfamily of repressors functions to target the histone deacetylase and chromatin remodeling activities of the NuRD complex to specific gene promoters in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Krüppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing.

              Krüppel-associated box (KRAB) domains are present in approximately one-third of all human zinc finger proteins (ZFPs) and are potent transcriptional repression modules. We have previously cloned a corepressor for the KRAB domain, KAP-1, which is required for KRAB-mediated repression in vivo. To characterize the repression mechanism utilized by KAP-1, we have analyzed the ability of KAP-1 to interact with murine (M31 and M32) and human (HP1alpha and HP1gamma) homologues of the HP1 protein family, a class of nonhistone heterochromatin-associated proteins with a well-established epigenetic gene silencing function in Drosophila. In vitro studies confirmed that KAP-1 is capable of directly interacting with M31 and hHP1alpha, which are normally found in centromeric heterochromatin, as well as M32 and hHP1gamma, both of which are found in euchromatin. Mapping of the region in KAP-1 required for HP1 interaction showed that amino acid substitutions which abolish HP1 binding in vitro reduce KAP-1 mediated repression in vivo. We observed colocalization of KAP-1 with M31 and M32 in interphase nuclei, lending support to the biochemical evidence that M31 and M32 directly interact with KAP-1. The colocalization of KAP-1 with M31 is sometimes found in subnuclear territories of potential pericentromeric heterochromatin, whereas colocalization of KAP-1 and M32 occurs in punctate euchromatic domains throughout the nucleus. This work suggests a mechanism for the recruitment of HP1-like gene products by the KRAB-ZFP-KAP-1 complex to specific loci within the genome through formation of heterochromatin-like complexes that silence gene activity. We speculate that gene-specific repression may be a consequence of the formation of such complexes, ultimately leading to silenced genes in newly formed heterochromatic chromosomal environments.
                Bookmark

                Author and article information

                Journal
                Genome Biol
                Genome Biology
                BioMed Central (London )
                1465-6906
                1465-6914
                2003
                23 September 2003
                : 4
                : 10
                : 231
                Affiliations
                [1 ]Gastroenterology Research Unit, Saint Mary's Hospital and Department of Biochemistry and Molecular Biology and Tumor Biology Program, Mayo Clinic, Rochester, MN 55905, USA
                Article
                gb-2003-4-10-231
                10.1186/gb-2003-4-10-231
                328446
                14519192
                830702ba-45c7-44c6-8728-10e3372b79bb
                Copyright © 2003 BioMed Central Ltd
                History
                Categories
                Protein Family Review

                Genetics
                Genetics

                Comments

                Comment on this article