46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanisms of receptor tyrosine kinase activation in cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Receptor tyrosine kinases (RTKs) play an important role in a variety of cellular processes including growth, motility, differentiation, and metabolism. As such, dysregulation of RTK signaling leads to an assortment of human diseases, most notably, cancers. Recent large-scale genomic studies have revealed the presence of various alterations in the genes encoding RTKs such as EGFR, HER2/ ErbB2, and MET, amongst many others. Abnormal RTK activation in human cancers is mediated by four principal mechanisms: gain-of-function mutations, genomic amplification, chromosomal rearrangements, and / or autocrine activation. In this manuscript, we review the processes whereby RTKs are activated under normal physiological conditions and discuss several mechanisms whereby RTKs can be aberrantly activated in human cancers. Understanding of these mechanisms has important implications for selection of anti-cancer therapies.

          Related collections

          Most cited references202

          • Record: found
          • Abstract: found
          • Article: not found

          The protein kinase complement of the human genome.

          G. Manning (2002)
          We have catalogued the protein kinase complement of the human genome (the "kinome") using public and proprietary genomic, complementary DNA, and expressed sequence tag (EST) sequences. This provides a starting point for comprehensive analysis of protein phosphorylation in normal and disease states, as well as a detailed view of the current state of human genome analysis through a focus on one large gene family. We identify 518 putative protein kinase genes, of which 71 have not previously been reported or described as kinases, and we extend or correct the protein sequences of 56 more kinases. New genes include members of well-studied families as well as previously unidentified families, some of which are conserved in model organisms. Classification and comparison with model organism kinomes identified orthologous groups and highlighted expansions specific to human and other lineages. We also identified 106 protein kinase pseudogenes. Chromosomal mapping revealed several small clusters of kinase genes and revealed that 244 kinases map to disease loci or cancer amplicons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Osimertinib in Untreated EGFR-Mutated Advanced Non–Small-Cell Lung Cancer

            Osimertinib is an oral, third-generation, irreversible epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) that selectively inhibits both EGFR-TKI-sensitizing and EGFR T790M resistance mutations. We compared osimertinib with standard EGFR-TKIs in patients with previously untreated, EGFR mutation-positive advanced non-small-cell lung cancer (NSCLC).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Comprehensive molecular profiling of lung adenocarcinoma

              Adenocarcinoma of the lung is the leading cause of cancer death worldwide. Here we report molecular profiling of 230 resected lung adenocarcinomas using messenger RNA, microRNA and DNA sequencing integrated with copy number, methylation and proteomic analyses. High rates of somatic mutation were seen (mean 8.9 mutations per megabase). Eighteen genes were statistically significantly mutated, including RIT1 activating mutations and newly described loss-of-function MGA mutations which are mutually exclusive with focal MYC amplification. EGFR mutations were more frequent in female patients, whereas mutations in RBM10 were more common in males. Aberrations in NF1, MET, ERBB2 and RIT1 occurred in 13% of cases and were enriched in samples otherwise lacking an activated oncogene, suggesting a driver role for these events in certain tumours. DNA and mRNA sequence from the same tumour highlighted splicing alterations driven by somatic genomic changes, including exon 14 skipping in MET mRNA in 4% of cases. MAPK and PI(3)K pathway activity, when measured at the protein level, was explained by known mutations in only a fraction of cases, suggesting additional, unexplained mechanisms of pathway activation. These data establish a foundation for classification and further investigations of lung adenocarcinoma molecular pathogenesis.
                Bookmark

                Author and article information

                Contributors
                (615) 936-3457 , christine.lovly@vanderbilt.edu
                Journal
                Mol Cancer
                Mol. Cancer
                Molecular Cancer
                BioMed Central (London )
                1476-4598
                19 February 2018
                19 February 2018
                2018
                : 17
                : 58
                Affiliations
                [1 ]ISNI 0000 0004 1936 9916, GRID grid.412807.8, Department of Medicine, Division of Hematology and Oncology, , Vanderbilt University Medical Center, ; Nashville, TN 37232 USA
                [2 ]ISNI 0000 0004 1936 9916, GRID grid.412807.8, Vanderbilt-Ingram Cancer Center, , Vanderbilt University Medical Center, ; Nashville, TN 37232 USA
                Article
                782
                10.1186/s12943-018-0782-4
                5817791
                29455648
                830f4411-66d3-4bd1-a4d6-9546238a0f4d
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 4 January 2018
                : 1 February 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: R01CA121210
                Award ID: P01CA129243
                Award ID: U10CA180864
                Award ID: P30CA068485-13S5
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2018

                Oncology & Radiotherapy
                receptor,tyrosine kinase,cancer,mutation,chromosomal rearrangement,targeted therapy,tyrosine kinase inhibitor (tki),oncogene

                Comments

                Comment on this article