13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Heterogeneity of astrocytic form and function.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Astrocytes participate in all essential CNS functions, including blood flow regulation, energy metabolism, ion and water homeostasis, immune defence, neurotransmission, and adult neurogenesis. It is thus not surprising that astrocytic morphology and function differ between regions, and that different subclasses of astrocytes exist within the same brain region. Recent lines of work also show that the complexity of protoplasmic astrocytes increases during evolution. Human astrocytes are structurally more complex, larger, and propagate calcium signals significantly faster than rodent astrocytes. In this chapter, we review the diversity of astrocytic form and function, while considering the markedly expanded roles of astrocytes with phylogenetic evolution. We also define major challenges for the future, which include determining how astrocytic functions are locally specified, defining the molecular controls upon astrocytic fate and physiology and establishing how evolutionary changes in astrocytes contribute to higher cognitive functions.

          Related collections

          Author and article information

          Journal
          Methods Mol Biol
          Methods in molecular biology (Clifton, N.J.)
          Springer Science and Business Media LLC
          1940-6029
          1064-3745
          2012
          : 814
          Affiliations
          [1 ] Center for Translational Neuromedicine, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA.
          Article
          NIHMS386813
          10.1007/978-1-61779-452-0_3
          3506190
          22144298
          8310f187-1c9b-43aa-80ac-7390f006c37a
          History

          Comments

          Comment on this article