8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      One-pot synthesis of graphene- cobalt hydroxide composite nanosheets (Co/G NSs) for electrocatalytic water oxidation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report a one-pot method for the preparation of graphene-cobalt hydroxide nanosheets (Co/G NSs) and their use as an effective elelctrocatalyst for water oxidation. Mechanical exfoliation of graphite via sonication produced graphene sheets, which were stabilized by the surface adsorption of a cationic surfactant (CTAB). In a subsequent step, varying amount of a cobalt complex [sodium hexanitrocobaltate(III)] was added which selectively bound with the positively charged head of surfactant. In the last step, cobalt complex was reduced with sodium borohydride to obtain Co/G NSs catalyst. The catalyst showed lower overpotential (280 mV) as compared to benchmark catalysts and decent stability and turnover frequency (TOF: 0.089 s −1) for oxygen evolution reaction (OER).

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The rise of graphene

          Graphene is a rapidly rising star on the horizon of materials science and condensed matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed matter physics, where quantum relativistic phenomena, some of which are unobservable in high energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Opportunities and challenges for a sustainable energy future.

            Access to clean, affordable and reliable energy has been a cornerstone of the world's increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty-first century must also be sustainable. Solar and water-based energy generation, and engineering of microbes to produce biofuels are a few examples of the alternatives. This Perspective puts these opportunities into a larger context by relating them to a number of aspects in the transportation and electricity generation sectors. It also provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Graphene: Status and Prospects

              A. K. Geim (2010)
              Graphene is a wonder material with many superlatives to its name. It is the thinnest material in the universe and the strongest ever measured. Its charge carriers exhibit giant intrinsic mobility, have the smallest effective mass (it is zero) and can travel micrometer-long distances without scattering at room temperature. Graphene can sustain current densities 6 orders higher than copper, shows record thermal conductivity and stiffness, is impermeable to gases and reconciles such conflicting qualities as brittleness and ductility. Electron transport in graphene is described by a Dirac-like equation, which allows the investigation of relativistic quantum phenomena in a bench-top experiment. What are other surprises that graphene keeps in store for us? This review analyses recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.
                Bookmark

                Author and article information

                Contributors
                muhammad.zaheer@lums.edu.pk
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                13 September 2018
                13 September 2018
                2018
                : 8
                : 13772
                Affiliations
                [1 ]GRID grid.440540.1, Department of Chemistry and Chemical Engineering, , SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), ; Lahore, 54792 Pakistan
                [2 ]Department of Chemistry, University of Poonch Rawalakot (UPR) Rawalakot, 12350 Azad Jammu and Kashmir, Pakistan
                Article
                32177
                10.1038/s41598-018-32177-9
                6137037
                30213989
                831e1f99-95dd-49dc-aad4-8a942608e1d3
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 16 February 2018
                : 3 September 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article