99
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beta Cell Dysfunction and Insulin Resistance

      review-article
      1
      Frontiers in Endocrinology
      Frontiers Media S.A.
      beta cell compensation, diabetes, obesity, oxidative stress, proliferation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Beta cell dysfunction and insulin resistance are inherently complex with their interrelation for triggering the pathogenesis of diabetes also somewhat undefined. Both pathogenic states induce hyperglycemia and therefore increase insulin demand. Beta cell dysfunction results from inadequate glucose sensing to stimulate insulin secretion therefore elevated glucose concentrations prevail. Persistently elevated glucose concentrations above the physiological range result in the manifestation of hyperglycemia. With systemic insulin resistance, insulin signaling within glucose recipient tissues is defective therefore hyperglycemia perseveres. Beta cell dysfunction supersedes insulin resistance in inducing diabetes. Both pathological states influence each other and presumably synergistically exacerbate diabetes. Preserving beta cell function and insulin signaling in beta cells and insulin signaling in the glucose recipient tissues will maintain glucose homeostasis.

          Related collections

          Most cited references138

          • Record: found
          • Abstract: found
          • Article: not found

          Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis.

          By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P<5x10(-8). These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure.

            Diabetes is associated with β cell failure. But it remains unclear whether the latter results from reduced β cell number or function. FoxO1 integrates β cell proliferation with adaptive β cell function. We interrogated the contribution of these two processes to β cell dysfunction, using mice lacking FoxO1 in β cells. FoxO1 ablation caused hyperglycemia with reduced β cell mass following physiologic stress, such as multiparity and aging. Surprisingly, lineage-tracing experiments demonstrated that loss of β cell mass was due to β cell dedifferentiation, not death. Dedifferentiated β cells reverted to progenitor-like cells expressing Neurogenin3, Oct4, Nanog, and L-Myc. A subset of FoxO1-deficient β cells adopted the α cell fate, resulting in hyperglucagonemia. Strikingly, we identify the same sequence of events as a feature of different models of murine diabetes. We propose that dedifferentiation trumps endocrine cell death in the natural history of β cell failure and suggest that treatment of β cell dysfunction should restore differentiation, rather than promoting β cell replication. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease.

              A reduction in dietary saturated fat has generally been thought to improve cardiovascular health. The objective of this meta-analysis was to summarize the evidence related to the association of dietary saturated fat with risk of coronary heart disease (CHD), stroke, and cardiovascular disease (CVD; CHD inclusive of stroke) in prospective epidemiologic studies. Twenty-one studies identified by searching MEDLINE and EMBASE databases and secondary referencing qualified for inclusion in this study. A random-effects model was used to derive composite relative risk estimates for CHD, stroke, and CVD. During 5-23 y of follow-up of 347,747 subjects, 11,006 developed CHD or stroke. Intake of saturated fat was not associated with an increased risk of CHD, stroke, or CVD. The pooled relative risk estimates that compared extreme quantiles of saturated fat intake were 1.07 (95% CI: 0.96, 1.19; P = 0.22) for CHD, 0.81 (95% CI: 0.62, 1.05; P = 0.11) for stroke, and 1.00 (95% CI: 0.89, 1.11; P = 0.95) for CVD. Consideration of age, sex, and study quality did not change the results. A meta-analysis of prospective epidemiologic studies showed that there is no significant evidence for concluding that dietary saturated fat is associated with an increased risk of CHD or CVD. More data are needed to elucidate whether CVD risks are likely to be influenced by the specific nutrients used to replace saturated fat.
                Bookmark

                Author and article information

                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                16 January 2013
                27 March 2013
                2013
                : 4
                : 37
                Affiliations
                [1] 1Diabetes Discovery Platform, South African Medical Research Council Cape Town, South Africa
                Author notes

                Edited by: Soroku Yagihashi, Hirosaki University Graduate School of Medicine, Japan

                Reviewed by: Hiroki Mizukami, Hirosaki University Graduate School of Medicine, Japan; Naoto Kubota, University of Tokyo, Japan

                *Correspondence: Marlon E. Cerf, Diabetes Discovery Platform, South African Medical Research Council, PO Box 19070, Tygerberg, Cape Town 7505, South Africa. e-mail: marlon.cerf@ 123456mrc.ac.za

                This article was submitted to Frontiers in Diabetes, a specialty of Frontiers in Endocrinology.

                Article
                10.3389/fendo.2013.00037
                3608918
                23542897
                831e3477-c55c-47e8-9f78-7f6a468ad62e
                Copyright © 2013 Cerf.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 21 December 2012
                : 10 March 2013
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 160, Pages: 12, Words: 12250
                Categories
                Endocrinology
                Review Article

                Endocrinology & Diabetes
                beta cell compensation,diabetes,obesity,oxidative stress,proliferation
                Endocrinology & Diabetes
                beta cell compensation, diabetes, obesity, oxidative stress, proliferation

                Comments

                Comment on this article