22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of glutamic acid foliar applications on lettuce under water stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The yield and quality of leafy vegetables can be compromised by reduced water availability. Glutamic acid is involved in different biological processes and among them it plays an important role in chlorophyll and proline biosynthesis. The aim of this work was to evaluate the possible efficacy of glutamic acid in counteracting water stress in romaine lettuce. Lettuce plants were grown in pots filled with substrate and subjected to water deprivation. A glutamic acid solution (1.9 mM) was applied as foliar treatment, both in stressed and non-stressed plants. The effect of the treatment was evaluated at different time points during the experiment in order to evaluate changes at a molecular, physiological, biochemical and agronomic level. Yield was reduced by 35% in stressed plants, while no significant changes in quality parameters were observed, except for nitrate content, which increased under water stress. At a molecular level, the expression of genes encoding for ROS scavenging enzymes was monitored but, apparently, glutamic acid did not significantly prevent the water stress response. Slightly positive effects deriving from glutamic acid application were found for nitrate and proline contents, suggesting that a possible mode of action of glutamic acid would involve a role for these molecules. Further studies are required, also on other crop species, for confirming these results. Different concentrations and application modes should be also tested.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid determination of free proline for water-stress studies

            Plant and Soil, 39(1), 205-207
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.

              Various abiotic stresses lead to the overproduction of reactive oxygen species (ROS) in plants which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA which ultimately results in oxidative stress. The ROS comprises both free radical (O(2)(-), superoxide radicals; OH, hydroxyl radical; HO(2), perhydroxy radical and RO, alkoxy radicals) and non-radical (molecular) forms (H(2)O(2), hydrogen peroxide and (1)O(2), singlet oxygen). In chloroplasts, photosystem I and II (PSI and PSII) are the major sites for the production of (1)O(2) and O(2)(-). In mitochondria, complex I, ubiquinone and complex III of electron transport chain (ETC) are the major sites for the generation of O(2)(-). The antioxidant defense machinery protects plants against oxidative stress damages. Plants possess very efficient enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX; guaicol peroxidase, GOPX and glutathione-S- transferase, GST) and non-enzymatic (ascorbic acid, ASH; glutathione, GSH; phenolic compounds, alkaloids, non-protein amino acids and α-tocopherols) antioxidant defense systems which work in concert to control the cascades of uncontrolled oxidation and protect plant cells from oxidative damage by scavenging of ROS. ROS also influence the expression of a number of genes and therefore control the many processes like growth, cell cycle, programmed cell death (PCD), abiotic stress responses, pathogen defense, systemic signaling and development. In this review, we describe the biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                giulia.franzoni@unimi.it
                Journal
                Physiol Mol Biol Plants
                Physiol Mol Biol Plants
                Physiology and Molecular Biology of Plants
                Springer India (New Delhi )
                0971-5894
                0974-0430
                22 April 2021
                22 April 2021
                May 2021
                : 27
                : 5
                : 1059-1072
                Affiliations
                GRID grid.4708.b, ISNI 0000 0004 1757 2822, Facoltà di Scienze Agrarie e Alimentari, , Università degli Studi di Milano, ; Via Giovanni Celoria, 2, Milan, 20133 Italy
                Author information
                http://orcid.org/0000-0003-2201-334X
                Article
                984
                10.1007/s12298-021-00984-6
                8140180
                34103849
                831f4fd6-8209-4465-8a7f-2f5f0dd7fec2
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 26 June 2020
                : 16 March 2021
                : 30 March 2021
                Funding
                Funded by: Università degli Studi di Milano
                Categories
                Research Article
                Custom metadata
                © Prof. H.S. Srivastava Foundation for Science and Society 2021

                antioxidant,drought stress,foliar treatment,glutamic acid,re-watering,lactuca sativa

                Comments

                Comment on this article