Blog
About

86
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Regeneration and Experimental Orthotopic Transplantation of a Bioengineered Kidney

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Over 100,000 individuals in the United States currently await kidney transplantation, while 400,000 individuals live with end-stage kidney disease requiring hemodialysis. The creation of a transplantable graft to permanently replace kidney function would address donor organ shortage and the morbidity associated with immunosuppression. Such a bioengineered graft must have the kidney’s architecture and function, and permit perfusion, filtration, secretion, absorption, and drainage of urine. We decellularized rat, porcine, and human kidneys by detergent perfusion, yielding acellular scaffolds with vascular, cortical and medullary architecture, collecting system and ureters. To regenerate functional tissue, we seeded rat kidney scaffolds with epithelial and endothelial cells, then perfused these cell-seeded constructs in a whole organ bioreactor. The resulting grafts produced rudimentary urine in vitro when perfused via their intrinsic vascular bed. When transplanted in orthotopic position in rat, the grafts were perfused by the recipient’s circulation, and produced urine via the ureteral conduit in vivo.

          Related collections

          Most cited references 27

          • Record: found
          • Abstract: found
          • Article: not found

          Regeneration and orthotopic transplantation of a bioartificial lung.

          About 2,000 patients now await a donor lung in the United States. Worldwide, 50 million individuals are living with end-stage lung disease. Creation of a bioartificial lung requires engineering of viable lung architecture enabling ventilation, perfusion and gas exchange. We decellularized lungs by detergent perfusion and yielded scaffolds with acellular vasculature, airways and alveoli. To regenerate gas exchange tissue, we seeded scaffolds with epithelial and endothelial cells. To establish function, we perfused and ventilated cell-seeded constructs in a bioreactor simulating the physiologic environment of developing lung. By day 5, constructs could be perfused with blood and ventilated using physiologic pressures, and they generated gas exchange comparable to that of isolated native lungs. To show in vivo function, we transplanted regenerated lungs into orthotopic position. After transplantation, constructs were perfused by the recipient's circulation and ventilated by means of the recipient's airway and respiratory muscles, and they provided gas exchange in vivo for up to 6 h after extubation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Decellularized tissue-engineered blood vessel as an arterial conduit.

            Arterial tissue-engineering techniques that have been reported previously typically involve long waiting times of several months while cells from the recipient are cultured to create the engineered vessel. In this study, we developed a different approach to arterial tissue engineering that can substantially reduce the waiting time for a graft. Tissue-engineered vessels (TEVs) were grown from banked porcine smooth muscle cells that were allogeneic to the intended recipient, using a biomimetic perfusion system. The engineered vessels were then decellularized, leaving behind the mechanically robust extracellular matrix of the graft wall. The acellular grafts were then seeded with cells that were derived from the intended recipient--either endothelial progenitor cells (EPC) or endothelial cell (EC)--on the graft lumen. TEV were then implanted as end-to-side grafts in the porcine carotid artery, which is a rigorous testbed due to its tendency for graft occlusion. The EPC- and EC-seeded TEV all remained patent for 30 d in this study, whereas the contralateral control vein grafts were patent in only 3/8 implants. Going along with the improved patency, the cell-seeded TEV demonstrated less neointimal hyperplasia and fewer proliferating cells than did the vein grafts. Proteins in the mammalian target of rapamycin signaling pathway tended to be decreased in TEV compared with vein grafts, implicating this pathway in the TEV's resistance to occlusion from intimal hyperplasia. These results indicate that a readily available, decellularized tissue-engineered vessel can be seeded with autologous endothelial progenitor cells to provide a biological vascular graft that resists both clotting and intimal hyperplasia. In addition, these results show that engineered connective tissues can be grown from banked cells, rendered acellular, and then used for tissue regeneration in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds.

              The scarcity of transplant allografts for diseased organs has prompted efforts at tissue regeneration using seeded scaffolds, an approach hampered by the enormity of cell types and complex architectures. Our goal was to decellularize intact organs in a manner that retained the matrix signal for differentiating pluripotent cells. We decellularized intact rat kidneys in a manner that preserved the intricate architecture and seeded them with pluripotent murine embryonic stem cells antegrade through the artery or retrograde through the ureter. Primitive precursor cells populated and proliferated within the glomerular, vascular, and tubular structures. Cells lost their embryonic appearance and expressed immunohistochemical markers for differentiation. Cells not in contact with the basement membrane matrix became apoptotic, thereby forming lumens. These observations suggest that the extracellular matrix can direct regeneration of the kidney, and studies using seeded scaffolds may help define differentiation pathways.
                Bookmark

                Author and article information

                Journal
                9502015
                8791
                Nat Med
                Nat. Med.
                Nature medicine
                1078-8956
                1546-170X
                1 March 2013
                14 April 2013
                May 2013
                01 November 2013
                : 19
                : 5
                : 646-651
                Affiliations
                [1 ]Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital
                [2 ]Center for Regenerative Medicine, Massachusetts General Hospital
                [3 ]Division of Pediatric Surgery, Department of Surgery, Massachusetts General Hospital
                [4 ]Harvard Medical School
                Author notes
                Corresponding Author: Harald C Ott, MD, PD, Harvard Medical School, Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, GRB – 425, Boston, MA 02114, hott@ 123456partners.org
                Article
                NIHMS444902
                10.1038/nm.3154
                3650107
                23584091

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                Categories
                Article

                Medicine

                Comments

                Comment on this article