32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Apyrase treatment of myocardial infarction according to a clinically applicable protocol fails to reduce myocardial injury in a porcine model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ectonucleotidase dependent adenosine generation has been implicated in preconditioning related cardioprotection against ischemia-reperfusion injury, and treatment with a soluble ectonucleotidase has been shown to reduce myocardial infarct size (IS) when applied prior to induction of ischemia. However, ectonucleotidase treatment according to a clinically applicable protocol, with administration only after induction of ischemia, has not previously been evaluated. We therefore investigated if treatment with the ectonucleotidase apyrase, according to a clinically applicable protocol, would reduce IS and microvascular obstruction (MO) in a large animal model.

          Methods

          A percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 min, in 16 anesthetized pigs (40-50 kg). The pigs were randomized to 40 min of 1 ml/min intracoronary infusion of apyrase (10 U/ml, n = 8) or saline (0.9 mg/ml, n = 8), twenty minutes after balloon inflation. Area at risk (AAR) was evaluated by ex vivo SPECT. IS and MO were evaluated by ex vivo MRI.

          Results

          No differences were observed between the apyrase group and saline group with respect to IS/AAR (75.7 ± 4.2% vs 69.4 ± 5.0%, p = NS) or MO (10.7 ± 4.8% vs 11.4 ± 4.8%, p = NS), but apyrase prolonged the post-ischemic reactive hyperemia.

          Conclusion

          Apyrase treatment according to a clinically applicable protocol, with administration of apyrase after induction of ischemia, does not reduce myocardial infarct size or microvascular obstruction.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials.

          Many trials have been done to compare primary percutaneous transluminal coronary angioplasty (PTCA) with thrombolytic therapy for acute ST-segment elevation myocardial infarction (AMI). Our aim was to look at the combined results of these trials and to ascertain which reperfusion therapy is most effective. We did a search of published work and identified 23 trials, which together randomly assigned 7739 thrombolytic-eligible patients with ST-segment elevation AMI to primary PTCA (n=3872) or thrombolytic therapy (n=3867). Streptokinase was used in eight trials (n=1837), and fibrin-specific agents in 15 (n=5902). Most patients who received thrombolytic therapy (76%, n=2939) received a fibrin-specific agent. Stents were used in 12 trials, and platelet glycoprotein IIb/IIIa inhibitors were used in eight. We identified short-term and long-term clinical outcomes of death, non-fatal reinfarction, and stroke, and did subgroup analyses to assess the effect of type of thrombolytic agent used and the strategy of emergent hospital transfer for primary PTCA. All analyses were done with and without inclusion of the SHOCK trial data. Primary PTCA was better than thrombolytic therapy at reducing overall short-term death (7% [n=270] vs 9% [360]; p=0.0002), death excluding the SHOCK trial data (5% [199] vs 7% [276]; p=0.0003), non-fatal reinfarction (3% [80] vs 7% [222]; p<0.0001), stroke (1% [30] vs 2% [64]; p=0.0004), and the combined endpoint of death, non-fatal reinfarction, and stroke (8% [253] vs 14% [442]; p<0.0001). The results seen with primary PTCA remained better than those seen with thrombolytic therapy during long-term follow-up, and were independent of both the type of thrombolytic agent used, and whether or not the patient was transferred for primary PTCA. Primary PTCA is more effective than thrombolytic therapy for the treatment of ST-segment elevation AMI.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction; A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of patients with acute myocardial infarction).

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Physiological roles for ecto-5’-nucleotidase (CD73)

              Nucleotides and nucleosides influence nearly every aspect of physiology and pathophysiology. Extracellular nucleotides are metabolized through regulated phosphohydrolysis by a series of ecto-nucleotidases. The formation of extracellular adenosine from adenosine 5’-monophosphate is accomplished primarily through ecto-5’-nucleotidase (CD73), a glycosyl phosphatidylinositol-linked membrane protein found on the surface of a variety of cell types. Recent in vivo studies implicating CD73 in a number of tissue protective mechanisms have provided new insight into its regulation and function and have generated considerable interest. Here, we review contributions of CD73 to cell and tissue stress responses, with a particular emphasis on physiologic responses to regulated CD73 expression and function, as well as new findings utilizing Cd73-deficient animals.
                Bookmark

                Author and article information

                Journal
                BMC Cardiovasc Disord
                BMC Cardiovascular Disorders
                BioMed Central
                1471-2261
                2010
                4 January 2010
                : 10
                : 1
                Affiliations
                [1 ]Department of Cardiology, Lund University Hospital, Lund, Sweden
                [2 ]Department of Clinical Physiology, Lund University Hospital, Lund, Sweden
                Article
                1471-2261-10-1
                10.1186/1471-2261-10-1
                2820435
                20047685
                832ccb3a-ae31-4538-877f-2f4e15b4596a
                Copyright ©2010 van der Pals et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 October 2009
                : 4 January 2010
                Categories
                Research article

                Cardiovascular Medicine
                Cardiovascular Medicine

                Comments

                Comment on this article