6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LncRNA MALAT1 contributes to non-small cell lung cancer progression via modulating miR-200a-3p/programmed death-ligand 1 axis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study was to investigate the expression correlation between long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (lncRNA MALAT1), miR-200a-3p and programmed death-ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC), and their roles in NSCLC. Real-time polymerase chain reaction (PCR) was performed to detect the expressions of MALAT1, miR-200a-3p and PD-L1 in NSCLC tissues and cells for the correlation analysis. The starBase and Targetscan databases were used to predict the binding sites between MALAT1 and miR-200a-3p, and miR-200a-3p and PD-L1, respectively. The targeting relationship between MALAT1 and miR-200a-3p, and miR-200a-3p and PD-L1 were further verified by real-time PCR and dual luciferase reporter gene assay. Cell proliferation was monitored by CCK8 and colony formation assays. The apoptosis was detected using flow cytometry. Wound healing assay and transwell assay were conducted to determine cell migration and invasion. In this study, we demonstrated that in NSCLC tissues, the expression level of MALAT1 was negatively correlated with that of miR-200a-3p, while positively correlated with PD-L1. Besides, MALAT1 promoted proliferation, mobility, migration, and invasion of NSCLC cells via sponging miR-200a-3p. PD-L1 was validated as a target of miR-200a-3p, and indirectly modulated by MALAT1. In conclusion, LncRNA MALAT1 facilitates the progression of NSCLC by modulating miR-200a-3p/PDL1 axis.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway.

            The programmed death 1 (PD-1) receptor and its ligands programmed death ligand 1 (PD-L1) and PD-L2, members of the CD28 and B7 families, play critical roles in T cell coinhibition and exhaustion. Overexpression of PD-L1 and PD-1 on tumor cells and tumor-infiltrating lymphocytes, respectively, correlates with poor disease outcome in some human cancers. Monoclonal antibodies (mAbs) blockading the PD-1/PD-L1 pathway have been developed for cancer immunotherapy via enhancing T cell functions. Clinical trials with mAbs to PD-1 and PD-L1 have shown impressive response rates in patients, particularly for melanoma, non-small-cell lung cancer (NSCLC), renal cell carcinoma (RCC), and bladder cancer. Further studies are needed to dissect the mechanisms of variable response rate, to identify biomarkers for clinical response, to develop small-molecule inhibitors, and to combine these treatments with other therapies. Copyright © 2014 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations.

              Programmed death-1 (PD-1) is a cell surface receptor that functions as a T cell checkpoint and plays a central role in regulating T cell exhaustion. Binding of PD-1 to its ligand, programmed death-ligand 1 (PD-L1), activates downstream signaling pathways and inhibits T cell activation. Moreover abnormally high PD-L1 expression on tumor cells and antigen-presenting cells in the tumor microenvironment mediates tumor immune escape, and the development of anti-PD-1/PD-L1 antibodies has recently become a hot topic in cancer immunotherapy. Here, we review the structure of PD-1 and PD-L1, the function of the PD-1/PD-L1 signaling pathway, the application of PD-1 or PD-L1 monoclonal antibodies and future directions for anti-PD-1/PD-L1 antibodies with combination therapies. Cancer immunotherapy using PD-1/PD-L1 immune checkpoint blockade may require more studies, and this approach may be curative for patients with many types of cancer in the future.
                Bookmark

                Author and article information

                Journal
                Int J Immunopathol Pharmacol
                Int J Immunopathol Pharmacol
                IJI
                spiji
                International Journal of Immunopathology and Pharmacology
                SAGE Publications (Sage UK: London, England )
                0394-6320
                2058-7384
                26 June 2019
                Jan-Dec 2019
                : 33
                : 2058738419859699
                Affiliations
                [1 ]Department of Pulmonary and Critical Care Medicine, Guangzhou First People’s Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, China
                [2 ]Department of Pathology, Guangzhou First People’s Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, China
                Author notes
                [*]Ziwen Zhao, Department of Pulmonary and Critical Care Medicine, Guangzhou First People’s Hospital, The Second Affiliated Hospital of South China University of Technology, No. 1 Panfu Road, Guangzhou 510180, Guangdong, China. Email: eyzhaoziwen@ 123456scut.edu.cn
                Author information
                https://orcid.org/0000-0002-4374-9914
                Article
                10.1177_2058738419859699
                10.1177/2058738419859699
                6595645
                31240979
                833bae6e-bd55-45a7-8aac-630aa5040e4f
                © The Author(s) 2019

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 13 April 2019
                : 28 May 2019
                Categories
                Original Research Article
                Custom metadata
                January-December 2019

                lncrna malat1,mir-200a-3p,nsclc,pd-l1
                lncrna malat1, mir-200a-3p, nsclc, pd-l1

                Comments

                Comment on this article