20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Single nucleotide polymorphisms and the future of genetic epidemiology : SNPs and genetic epidemiology

      , ,
      Clinical Genetics
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this review, we consider the motivation behind contemporary single nucleotide polymorphism (SNP) initiatives. Many of these initiatives are projected to involve large, population-based surveys. We therefore emphasize the utility of SNPs for genetic epidemiology studies. We start by offering an overview of genetic polymorphism and discuss the historical use of polymorphism in the identification of disease-predisposing genes via meiotic mapping. We next consider some of the unique aspects of SNPs, and their relative advantages and disadvantages in human population-based analyses. In this context, we describe and critique the following six different areas of application for SNP technologies: Gene discovery and mapping. Association-based candidate polymorphism testing. Diagnostics and risk profiling. Prediction of response to environmental stimuli, xenobiotics and diet. Homogeneity testing and epidemiological study design. Physiologic genomics. We focus on key issues within each of these areas in an effort to point out potential problems that might plague the use of SNPs (or other forms of polymorphism) within them. However, we make no claim that our list of considerations are exhaustive. Rather, we believe that they may provide a starting point for further dialog about the ultimate utility of SNP technologies. In addition, although our emphasis is placed on applications of SNPs to the understanding of human phenotypes, we acknowledge that SNP maps and technologies applied to other species (e.g. the mouse genome, pathogen genomes, plant genomes, etc.) are also of tremendous interest.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: not found
          • Article: not found

          Genetic dissection of complex traits

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization of single-nucleotide polymorphisms in coding regions of human genes.

            A major goal in human genetics is to understand the role of common genetic variants in susceptibility to common diseases. This will require characterizing the nature of gene variation in human populations, assembling an extensive catalogue of single-nucleotide polymorphisms (SNPs) in candidate genes and performing association studies for particular diseases. At present, our knowledge of human gene variation remains rudimentary. Here we describe a systematic survey of SNPs in the coding regions of human genes. We identified SNPs in 106 genes relevant to cardiovascular disease, endocrinology and neuropsychiatry by screening an average of 114 independent alleles using 2 independent screening methods. To ensure high accuracy, all reported SNPs were confirmed by DNA sequencing. We identified 560 SNPs, including 392 coding-region SNPs (cSNPs) divided roughly equally between those causing synonymous and non-synonymous changes. We observed different rates of polymorphism among classes of sites within genes (non-coding, degenerate and non-degenerate) as well as between genes. The cSNPs most likely to influence disease, those that alter the amino acid sequence of the encoded protein, are found at a lower rate and with lower allele frequencies than silent substitutions. This likely reflects selection acting against deleterious alleles during human evolution. The lower allele frequency of missense cSNPs has implications for the compilation of a comprehensive catalogue, as well as for the subsequent application to disease association.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage.

              A selective advantage against infectious disease associated with increased heterozygosity at the human major histocompatibility complex [human leukocyte antigen (HLA) class I and class II] is believed to play a major role in maintaining the extraordinary allelic diversity of these genes. Maximum HLA heterozygosity of class I loci (A, B, and C) delayed acquired immunodeficiency syndrome (AIDS) onset among patients infected with human immunodeficiency virus-type 1 (HIV-1), whereas individuals who were homozygous for one or more loci progressed rapidly to AIDS and death. The HLA class I alleles B*35 and Cw*04 were consistently associated with rapid development of AIDS-defining conditions in Caucasians. The extended survival of 28 to 40 percent of HIV-1-infected Caucasian patients who avoided AIDS for ten or more years can be attributed to their being fully heterozygous at HLA class I loci, to their lacking the AIDS-associated alleles B*35 and Cw*04, or to both.
                Bookmark

                Author and article information

                Journal
                Clinical Genetics
                Clinical Genetics
                Wiley
                00099163
                13990004
                October 2000
                December 24 2001
                : 58
                : 4
                : 250-264
                Article
                10.1034/j.1399-0004.2000.580402.x
                11076050
                8342c340-080c-4f20-99bb-13b3fe72e70f
                © 2001

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article