10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Autism spectrum disorder genetics: diverse genes with diverse clinical outcomes.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The last several years have seen unprecedented advances in deciphering the genetic etiology of autism spectrum disorders (ASDs). Heritability studies have repeatedly affirmed a contribution of genetic factors to the overall disease risk. Technical breakthroughs have enabled the search for these genetic factors via genome-wide surveys of a spectrum of potential sequence variations, from common single-nucleotide polymorphisms to essentially private chromosomal abnormalities. Studies of copy-number variation have identified significant roles for both recurrent and nonrecurrent large dosage imbalances, although they have rarely revealed the individual genes responsible. More recently, discoveries of rare point mutations and characterization of balanced chromosomal abnormalities have pinpointed individual ASD genes of relatively strong effect, including both loci with strong a priori biological relevance and those that would have otherwise been unsuspected as high-priority biological targets. Evidence has also emerged for association with many common variants, each adding a small individual contribution to ASD risk. These findings collectively provide compelling empirical data that the genetic basis of ASD is highly heterogeneous, with hundreds of genes capable of conferring varying degrees of risk, depending on their nature and the predisposing genetic alteration. Moreover, many genes that have been implicated in ASD also appear to be risk factors for related neurodevelopmental disorders, as well as for a spectrum of psychiatric phenotypes. While some ASD genes have evident functional significance, like synaptic proteins such as the SHANKs, neuroligins, and neurexins, as well as fragile x mental retardation-associated proteins, ASD genes have also been discovered that do not present a clear mechanism of specific neurodevelopmental dysfunction, such as regulators of chromatin modification and global gene expression. In its sum, the progress from genetic studies to date has been remarkable and increasingly rapid, but the interactive impact of strong-effect genetic lesions coupled with weak-effect common polymorphisms has not yet led to a unified understanding of ASD pathogenesis or explained its highly variable clinical expression. With an increasingly firm genetic foundation, the coming years will hopefully see equally rapid advances in elucidating the functional consequences of ASD genes and their interactions with environmental/experiential factors, supporting the development of rational interventions.

          Related collections

          Author and article information

          Journal
          Harv Rev Psychiatry
          Harvard review of psychiatry
          Ovid Technologies (Wolters Kluwer Health)
          1465-7309
          1067-3229
          March 13 2014
          : 22
          : 2
          Affiliations
          [1 ] From Harvard Medical School (Drs. Talkowski and Gusella); Department of Neurology (Drs. Talkowski and Gusella), Psychiatric and Neurodevelopmental Genetics Unit (Dr. Talkowski) and Molecular Neurogenetics Unit, Center for Human Genetic Research (Drs. Talkowski and Gusella, and Mr. Minikel), Massachusetts General Hospital, Boston, MA.
          Article
          00023727-201403000-00002
          10.1097/HRP.0000000000000002
          24614762
          834d337a-fcf6-42c9-a3cd-c0f41b2af22d
          History

          Comments

          Comment on this article