21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antioxidant Melatonin: Potential Functions in Improving Cerebral Autoregulation After Subarachnoid Hemorrhage

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Subarachnoid hemorrhage (SAH) is a subtype of stroke with high mortality and morbidity. Impaired cerebral autoregulation following SAH has been reported owing to effects on sympathetic control, endothelial function, myogenic response, and cerebral metabolism. Impaired cerebral autoregulation is associated with early brain injury, cerebral vasospasm/delayed cerebral ischemia, and SAH prognosis. However, few drugs have been reported to improve cerebral autoregulation after SAH. Melatonin is a powerful antioxidant that is effective (easily crosses the blood brain barrier) and safe (tolerated in large doses without toxicity). Theoretically, melatonin may impact the control mechanisms of cerebral autoregulation via antioxidative effects, protection of endothelial cell integrity, suppression of sympathetic nerve activity, increase in nitric oxide bioavailability, mediation of the myogenic response, and amelioration of hypoxemia. Furthermore, melatonin may have a comprehensive effect on cerebral autoregulation. This review discusses the potential effects of melatonin on cerebral autoregulation following SAH, in terms of the association between pharmacological activities and the mechanisms of cerebral autoregulation.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          Melatonin: a well-documented antioxidant with conditional pro-oxidant actions.

          Melatonin (N-acetyl-5-methoxytryptamine), an indoleamine produced in many organs including the pineal gland, was initially characterized as a hormone primarily involved in circadian regulation of physiological and neuroendocrine function. Subsequent studies found that melatonin and its metabolic derivatives possess strong free radical scavenging properties. These metabolites are potent antioxidants against both ROS (reactive oxygen species) and RNS (reactive nitrogen species). The mechanisms by which melatonin and its metabolites protect against free radicals and oxidative stress include direct scavenging of radicals and radical products, induction of the expression of antioxidant enzymes, reduction of the activation of pro-oxidant enzymes, and maintenance of mitochondrial homeostasis. In both in vitro and in vivo studies, melatonin has been shown to reduce oxidative damage to lipids, proteins and DNA under a very wide set of conditions where toxic derivatives of oxygen are known to be produced. Although the vast majority of studies proved the antioxidant capacity of melatonin and its derivatives, a few studies using cultured cells found that melatonin promoted the generation of ROS at pharmacological concentrations (μm to mm range) in several tumor and nontumor cells; thus, melatonin functioned as a conditional pro-oxidant. Mechanistically, melatonin may stimulate ROS production through its interaction with calmodulin. Also, melatonin may interact with mitochondrial complex III or mitochondrial transition pore to promote ROS production. Whether melatonin functions as a pro-oxidant under in vivo conditions is not well documented; thus, whether the reported in vitro pro-oxidant actions come into play in live organisms remains to be established. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physiological roles and properties of potassium channels in arterial smooth muscle.

            This review examines the properties and roles of the four types of K+ channels that have been identified in the cell membrane of arterial smooth muscle cells. 1) Voltage-dependent K+ (KV) channels increase their activity with membrane depolarization and are important regulators of smooth muscle membrane potential in response to depolarizing stimuli. 2) Ca(2+)-activated K+ (KCa) channels respond to changes in intracellular Ca2+ to regulate membrane potential and play an important role in the control of myogenic tone in small arteries. 3) Inward rectifier K+ (KIR) channels regulate membrane potential in smooth muscle cells from several types of resistance arteries and may be responsible for external K(+)-induced dilations. 4) ATP-sensitive K+ (KATP) channels respond to changes in cellular metabolism and are targets of a variety of vasodilating stimuli. The main conclusions of this review are: 1) regulation of arterial smooth muscle membrane potential through activation or inhibition of K+ channel activity provides an important mechanism to dilate or constrict arteries; 2) KV, KCa, KIR, and KATP channels serve unique functions in the regulation of arterial smooth muscle membrane potential; and 3) K+ channels integrate a variety of vasoactive signals to dilate or constrict arteries through regulation of the membrane potential in arterial smooth muscle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cerebral autoregulation.

              Autoregulation of blood flow denotes the intrinsic ability of an organ or a vascular bed to maintain a constant perfusion in the face of blood pressure changes. Alternatively, autoregulation can be defined in terms of vascular resistance changes or simply arteriolar caliber changes as blood pressure or perfusion pressure varies. While known in almost any vascular bed, autoregulation and its disturbance by disease has attracted particular attention in the cerebrovascular field. The basic mechanism of autoregulation of cerebral blood flow (CBF) is controversial. Most likely, the autoregulatory vessel caliber changes are mediated by an interplay between myogenic and metabolic mechanisms. Influence of perivascular nerves and most recently the vascular endothelium has also been the subject of intense investigation. CBF autoregulation typically operates between mean blood pressures of the order of 60 and 150 mm Hg. These limits are not entirely fixed but can be modulated by sympathetic nervous activity, the vascular renin-angiotensin system, and any factor (notably changes in arterial carbon dioxide tension) that decreases or increases CBF. Disease states of the brain may impair or abolish CBF autoregulation. Thus, autoregulation is lost in severe head injury or acute ischemic stroke, leaving surviving brain tissue unprotected against the potentially harmful effect of blood pressure changes. Likewise, autoregulation may be lost in the surroundings of a space-occupying brain lesion, be it a tumor or a hematoma. In many such disease states, autoregulation may be regained by hyperventilatory hypocapnia. Autoregulation may also be impaired in neonatal brain asphyxia and infections of the central nervous system, but appears to be intact in spreading depression and migraine, despite impairment of chemical and metabolic control of CBF. In chronic hypertension, the limits of autoregulation are shifted toward high blood pressure. Acute hypertensive encephalopathy, on the other hand, is thought to be due to autoregulatory failure at very high pressure. In long-term diabetes mellitus there may be chronic impairment of CBF autoregulation, probably due to diabetic microangiopathy.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                17 August 2018
                2018
                : 9
                : 1146
                Affiliations
                [1] 1Department of Neurology, The First Hospital of Jilin University , Changchun, China
                [2] 2Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University , Changchun, China
                [3] 3Cadre Ward, The First Hospital of Jilin University , Changchun, China
                [4] 4Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen, China
                Author notes

                Edited by: Cristina M. Sena, University of Coimbra, Portugal

                Reviewed by: Emilio A. Herrera, Universidad de Chile, Chile; Claudia Torres-Farfan, Universidad Austral de Chile, Chile

                These authors have contributed equally to this work

                This article was submitted to Vascular Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2018.01146
                6108098
                30174621
                834d6abf-e9d9-4d08-ad7b-b7b74e6d767b
                Copyright © 2018 Guo, Jin, Sun, Zhao, Liu, Ma, Sun and Yang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 March 2018
                : 30 July 2018
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 156, Pages: 12, Words: 0
                Categories
                Physiology
                Review

                Anatomy & Physiology
                melatonin,cerebral autoregulation,subarachnoid hemorrhage,antioxidant,sympathetic nerve,endothelial function

                Comments

                Comment on this article