17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Muscle Androgen Receptor Content but Not Systemic Hormones Is Associated With Resistance Training-Induced Skeletal Muscle Hypertrophy in Healthy, Young Men

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The factors that underpin heterogeneity in muscle hypertrophy following resistance exercise training (RET) remain largely unknown. We examined circulating hormones, intramuscular hormones, and intramuscular hormone-related variables in resistance-trained men before and after 12 weeks of RET. Backward elimination and principal component regression evaluated the statistical significance of proposed circulating anabolic hormones (e.g., testosterone, free testosterone, dehydroepiandrosterone, dihydrotestosterone, insulin-like growth factor-1, free insulin-like growth factor-1, luteinizing hormone, and growth hormone) and RET-induced changes in muscle mass ( n = 49). Immunoblots and immunoassays were used to evaluate intramuscular free testosterone levels, dihydrotestosterone levels, 5α-reductase expression, and androgen receptor content in the highest- (HIR; n = 10) and lowest- (LOR; n = 10) responders to the 12 weeks of RET. No hormone measured before exercise, after exercise, pre-intervention, or post-intervention was consistently significant or consistently selected in the final model for the change in: type 1 cross sectional area (CSA), type 2 CSA, or fat- and bone-free mass (LBM). Principal component analysis did not result in large dimension reduction and principal component regression was no more effective than unadjusted regression analyses. No hormone measured in the blood or muscle was different between HIR and LOR. The steroidogenic enzyme 5α-reductase increased following RET in the HIR ( P < 0.01) but not the LOR ( P = 0.32). Androgen receptor content was unchanged with RET but was higher at all times in HIR. Unlike intramuscular free testosterone, dihydrotestosterone, or 5α-reductase, there was a linear relationship between androgen receptor content and change in LBM ( P < 0.01), type 1 CSA ( P < 0.05), and type 2 CSA ( P < 0.01) both pre- and post-intervention. These results indicate that intramuscular androgen receptor content, but neither circulating nor intramuscular hormones (or the enzymes regulating their intramuscular production), influence skeletal muscle hypertrophy following RET in previously trained young men.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis.

          A present debate in muscle biology is whether myonuclear addition is required during skeletal muscle hypertrophy. We utilized K-means cluster analysis to classify 66 humans after 16 wk of knee extensor resistance training as extreme (Xtr, n = 17), modest (Mod, n = 32), or nonresponders (Non, n = 17) based on myofiber hypertrophy, which averaged 58, 28, and 0%, respectively (Bamman MM, Petrella JK, Kim JS, Mayhew DL, Cross JM. J Appl Physiol 102: 2232-2239, 2007). We hypothesized that robust hypertrophy seen in Xtr was driven by superior satellite cell (SC) activation and myonuclear addition. Vastus lateralis biopsies were obtained at baseline and week 16. SCs were identified immunohistochemically by surface expression of neural cell adhesion molecule. At baseline, myofiber size did not differ among clusters; however, the SC population was greater in Xtr (P < 0.01) than both Mod and Non, suggesting superior basal myogenic potential. SC number increased robustly during training in Xtr only (117%; P < 0.001). Myonuclear addition occurred in Mod (9%; P < 0.05) and was most effectively accomplished in Xtr (26%; P < 0.001). After training, Xtr had more myonuclei per fiber than Non (23%; P < 0.05) and tended to have more than Mod (19%; P = 0.056). Both Xtr and Mod expanded the myonuclear domain to meet (Mod) or exceed (Xtr) 2,000 mum(2) per nucleus, possibly driving demand for myonuclear addition to support myofiber expansion. These findings strongly suggest myonuclear addition via SC recruitment may be required to achieve substantial myofiber hypertrophy in humans. Individuals with a greater basal presence of SCs demonstrated, with training, a remarkable ability to expand the SC pool, incorporate new nuclei, and achieve robust growth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men

            We provide novel evidence of the effect of lifting markedly different (lighter vs. heavier) loads (mass per repetition) during whole-body resistance training on the development of muscle strength and hypertrophy in previously trained persons. Using a large sample size (n = 49), and contradicting dogma, we report that the relative load lifted per repetition does not determine skeletal muscle hypertrophy or, for the most part, strength development. In line with our previous work, acute postexercise systemic hormonal changes were unrelated to strength and hypertrophic gains.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression.

              MicroRNAs (miRNA), small noncoding RNA molecules, may regulate protein synthesis, while resistance exercise training (RT) is an efficient strategy for stimulating muscle protein synthesis in vivo. However, RT increases muscle mass, with a very wide range of effectiveness in humans. We therefore determined the expression level of 21 abundant miRNAs to determine whether variation in these miRNAs was able to explain the variation in RT-induced gains in muscle mass. Vastus lateralis biopsies were obtained from the top and bottom ∼20% of responders from 56 young men who undertook a 5 day/wk RT program for 12 wk. Training-induced muscle mass gain was determined by dual-energy X-ray absorptiometry, and fiber size was evaluated by histochemistry. The expression level of each miRNA was quantified using TaqMan-based quantitative PCR, with the analysis carried out in a blinded manner. Gene ontology and target gene profiling were used to predict the potential biological implications. Of the 21 mature miRNAs examined, 17 were stable during RT in both groups. However, miR-378, miR-29a, miR-26a, and miR-451 were differentially expressed between low and high responders. miR-378, miR-29a, and miR-26a were downregulated in low responders and unchanged in high responders, while miR-451 was upregulated only in low responders. Interestingly, the training-induced change in miR-378 abundance was positively correlated with muscle mass gains in vivo. Gene ontology analysis of the target gene list of miR-378, miR-29a, miR-26a, and miR-451, from the weighted cumulative context ranking methodology, indicated that miRNA changes in the low responders may be compensatory, reflecting a failure to "activate" growth and remodeling genes. We report, for the first time, that RT-induced hypertrophy in human skeletal muscle is associated with selected changes in miRNA abundance. Our analysis indicates that miRNAs may play a role in the phenotypic change and pronounced intergroup variation in the RT response.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                09 October 2018
                2018
                : 9
                : 1373
                Affiliations
                [1] 1Department of Kinesiology, McMaster University , Hamilton, ON, Canada
                [2] 2Graduate School of Human Development and Environment, Kobe University , Kobe, Japan
                [3] 3Department of Mathematics and Statistics, McMaster University , Hamilton, ON, Canada
                [4] 4College of Sport and Health Sciences, Ritsumeikan University , Shiga, Japan
                Author notes

                Edited by: Hassane Zouhal, University of Rennes 2 – Upper Brittany, France

                Reviewed by: Keith Baar, University of California, Davis, United States; Paul Timothy Reidy, University of Utah, United States

                *Correspondence: Stuart M. Phillips, phillis@ 123456mcmaster.ca

                This article was submitted to Exercise Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2018.01373
                6189473
                30356739
                834e9331-ce3d-4aea-8a1e-9d1a35ebff17
                Copyright © 2018 Morton, Sato, Gallaugher, Oikawa, McNicholas, Fujita and Phillips.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 21 May 2018
                : 10 September 2018
                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 45, Pages: 11, Words: 0
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                resistance exercise,testosterone,intramuscular,androgen receptor,hypertrophy
                Anatomy & Physiology
                resistance exercise, testosterone, intramuscular, androgen receptor, hypertrophy

                Comments

                Comment on this article