23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Transgenic Arabidopsis thaliana plants expressing a β-1,3-glucanase from sweet sorghum (Sorghum bicolor L.) show reduced callose deposition and increased tolerance to aluminium toxicity.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Seventy-one cultivars of sweet sorghum (Sorghum bicolor L.) were screened for aluminium (Al) tolerance by measuring relative root growth (RRG). Two contrasting cultivars, ROMA (Al tolerant) and POTCHETSTRM (Al sensitive), were selected to study shorter term responses to Al stress. POTCHETSTRM had higher callose synthase activity, lower β-1,3-glucanase activity and more callose deposition in the root apices during Al treatment compared with ROMA. We monitored the expression of 12 genes involved in callose synthesis and degradation and found that one of these, SbGlu1 (Sb03g045630.1), which encodes a β-1,3-glucanase enzyme, best explained the contrasting deposition of callose in ROMA and POTCHETSTRM during Al treatment. Full-length cDNAs of SbGlu1 was prepared from ROMA and POTCHETSTRM and expressed in Arabidopsis thaliana using the constitutive cauliflower mosaic virus (CaMV) 35S promoter. Independent transgenic lines displayed significantly greater Al tolerance than wild-type plants and vector-only controls. This phenotype was associated with greater total β-1,3-glucanase activity, less Al accumulation and reduced callose deposition in the roots. These results suggest that callose production is not just an early indicator of Al stress in plants but likely to be part of the toxicity pathway that leads to the inhibition of root growth.

          Related collections

          Author and article information

          Journal
          Plant Cell Environ.
          Plant, cell & environment
          Wiley-Blackwell
          1365-3040
          0140-7791
          Jun 2015
          : 38
          : 6
          Affiliations
          [1 ] Laboratory of Soil and Plant Molecular Genetics, College of Plant Science, Jilin University, Changchun, 130062, China; Engineering Research Center for Biomass Resource Utilization of Jilin Province, Changchun, 130062, China.
          Article
          10.1111/pce.12472
          25311645
          834fc19c-6d32-4d9c-8592-c753845f136c
          History

          β-1,3-glucanase gene,Arabidopsis
          β-1,3-glucanase gene, Arabidopsis

          Comments

          Comment on this article