94
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evidence-based de-implementation for contradicted, unproven, and aspiring healthcare practices

      editorial

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abandoning ineffective medical practices and mitigating the risks of untested practices are important for improving patient health and containing healthcare costs. Historically, this process has relied on the evidence base, societal values, cultural tensions, and political sway, but not necessarily in that order. We propose a conceptual framework to guide and prioritize this process, shifting emphasis toward the principles of evidence-based medicine, acknowledging that evidence may still be misinterpreted or distorted by recalcitrant proponents of entrenched practices and other biases.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Stenting versus aggressive medical therapy for intracranial arterial stenosis.

          Atherosclerotic intracranial arterial stenosis is an important cause of stroke that is increasingly being treated with percutaneous transluminal angioplasty and stenting (PTAS) to prevent recurrent stroke. However, PTAS has not been compared with medical management in a randomized trial. We randomly assigned patients who had a recent transient ischemic attack or stroke attributed to stenosis of 70 to 99% of the diameter of a major intracranial artery to aggressive medical management alone or aggressive medical management plus PTAS with the use of the Wingspan stent system. The primary end point was stroke or death within 30 days after enrollment or after a revascularization procedure for the qualifying lesion during the follow-up period or stroke in the territory of the qualifying artery beyond 30 days. Enrollment was stopped after 451 patients underwent randomization, because the 30-day rate of stroke or death was 14.7% in the PTAS group (nonfatal stroke, 12.5%; fatal stroke, 2.2%) and 5.8% in the medical-management group (nonfatal stroke, 5.3%; non-stroke-related death, 0.4%) (P=0.002). Beyond 30 days, stroke in the same territory occurred in 13 patients in each group. Currently, the mean duration of follow-up, which is ongoing, is 11.9 months. The probability of the occurrence of a primary end-point event over time differed significantly between the two treatment groups (P=0.009), with 1-year rates of the primary end point of 20.0% in the PTAS group and 12.2% in the medical-management group. In patients with intracranial arterial stenosis, aggressive medical management was superior to PTAS with the use of the Wingspan stent system, both because the risk of early stroke after PTAS was high and because the risk of stroke with aggressive medical therapy alone was lower than expected. (Funded by the National Institute of Neurological Disorders and Stroke and others; SAMMPRIS ClinicalTrials.gov number, NCT00576693.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeted versus universal decolonization to prevent ICU infection.

            Both targeted decolonization and universal decolonization of patients in intensive care units (ICUs) are candidate strategies to prevent health care-associated infections, particularly those caused by methicillin-resistant Staphylococcus aureus (MRSA). We conducted a pragmatic, cluster-randomized trial. Hospitals were randomly assigned to one of three strategies, with all adult ICUs in a given hospital assigned to the same strategy. Group 1 implemented MRSA screening and isolation; group 2, targeted decolonization (i.e., screening, isolation, and decolonization of MRSA carriers); and group 3, universal decolonization (i.e., no screening, and decolonization of all patients). Proportional-hazards models were used to assess differences in infection reductions across the study groups, with clustering according to hospital. A total of 43 hospitals (including 74 ICUs and 74,256 patients during the intervention period) underwent randomization. In the intervention period versus the baseline period, modeled hazard ratios for MRSA clinical isolates were 0.92 for screening and isolation (crude rate, 3.2 vs. 3.4 isolates per 1000 days), 0.75 for targeted decolonization (3.2 vs. 4.3 isolates per 1000 days), and 0.63 for universal decolonization (2.1 vs. 3.4 isolates per 1000 days) (P=0.01 for test of all groups being equal). In the intervention versus baseline periods, hazard ratios for bloodstream infection with any pathogen in the three groups were 0.99 (crude rate, 4.1 vs. 4.2 infections per 1000 days), 0.78 (3.7 vs. 4.8 infections per 1000 days), and 0.56 (3.6 vs. 6.1 infections per 1000 days), respectively (P<0.001 for test of all groups being equal). Universal decolonization resulted in a significantly greater reduction in the rate of all bloodstream infections than either targeted decolonization or screening and isolation. One bloodstream infection was prevented per 54 patients who underwent decolonization. The reductions in rates of MRSA bloodstream infection were similar to those of all bloodstream infections, but the difference was not significant. Adverse events, which occurred in 7 patients, were mild and related to chlorhexidine. In routine ICU practice, universal decolonization was more effective than targeted decolonization or screening and isolation in reducing rates of MRSA clinical isolates and bloodstream infection from any pathogen. (Funded by the Agency for Healthcare Research and the Centers for Disease Control and Prevention; REDUCE MRSA ClinicalTrials.gov number, NCT00980980).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Scientific evidence underlying the ACC/AHA clinical practice guidelines.

              The joint cardiovascular practice guidelines of the American College of Cardiology (ACC) and the American Heart Association (AHA) have become important documents for guiding cardiology practice and establishing benchmarks for quality of care. To describe the evolution of recommendations in ACC/AHA cardiovascular guidelines and the distribution of recommendations across classes of recommendations and levels of evidence. Data from all ACC/AHA practice guidelines issued from 1984 to September 2008 were abstracted by personnel in the ACC Science and Quality Division. Fifty-three guidelines on 22 topics, including a total of 7196 recommendations, were abstracted. The number of recommendations and the distribution of classes of recommendation (I, II, and III) and levels of evidence (A, B, and C) were determined. The subset of guidelines that were current as of September 2008 was evaluated to describe changes in recommendations between the first and current versions as well as patterns in levels of evidence used in the current versions. Among guidelines with at least 1 revision or update by September 2008, the number of recommendations increased from 1330 to 1973 (+48%) from the first to the current version, with the largest increase observed in use of class II recommendations. Considering the 16 current guidelines reporting levels of evidence, only 314 recommendations of 2711 total are classified as level of evidence A (median, 11%), whereas 1246 (median, 48%) are level of evidence C. Level of evidence significantly varies across categories of guidelines (disease, intervention, or diagnostic) and across individual guidelines. Recommendations with level of evidence A are mostly concentrated in class I, but only 245 of 1305 class I recommendations have level of evidence A (median, 19%). Recommendations issued in current ACC/AHA clinical practice guidelines are largely developed from lower levels of evidence or expert opinion. The proportion of recommendations for which there is no conclusive evidence is also growing. These findings highlight the need to improve the process of writing guidelines and to expand the evidence base from which clinical practice guidelines are derived.
                Bookmark

                Author and article information

                Journal
                Implement Sci
                Implement Sci
                Implementation Science : IS
                BioMed Central
                1748-5908
                2014
                8 January 2014
                : 9
                : 1
                Affiliations
                [1 ]National Cancer Institute, Bethesda, MD (VP) and Stanford Prevention Research Center, Departments of Medicine and Health Research and Policy, Stanford University School of Medicine, and Meta-Research Innovation Center at Stanford (METRICS), Medical School Office Building, Room X306, Stanford, CA 94305, USA
                Article
                1748-5908-9-1
                10.1186/1748-5908-9-1
                3892018
                24398253
                8359ee0d-341f-4036-bfa9-b9e4fbc6247f
                Copyright © 2014 Ioannidis and Prasad; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 November 2013
                : 11 December 2013
                Categories
                Editorial

                Medicine
                contradiction,divestment,bias,reversals,de-implementation,evidence-based medicine
                Medicine
                contradiction, divestment, bias, reversals, de-implementation, evidence-based medicine

                Comments

                Comment on this article