1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antibodies to the Muscarinic Acetylcholine Receptor M3 in Primary Biliary Cholangitis Inhibit Receptor Function on Cholangiocytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Aims: In primary biliary cholangitis (PBC), antibodies to a peptide of the muscarinic acetylcholine receptor 3 (mAChR3) have been described. Since the mAChR3 is expressed on cholangiocytes and mAChR3-signaling is involved in the pathogenesis of chronic inflammatory biliary diseases, we wanted to investigate whether anti-mAChR3-antibodies influence the function of the receptor and the proliferative response of cholangiocytes.

          Methods: Immunoglobulins were isolated by ammonium sulfate precipitation using sera from patients with PBC ( n = 63) and with other chronic liver disorders ( n = 150). All immunoglobulins were analyzed by a luminometric assay using Chinese hamster ovary (CHO) cells overexpressing the mAChR3 and cholangiocytes (TFK-1-cells) expressing the receptor constitutively. Cell proliferation was measured by 3H-thymidine assay. PBC patients were also analyzed in the follow-up.

          Results: Antibodies inhibiting the mAChR3 were found in 49 and 79% of PBC patients using CHO-cells or TFK-1-cells, respectively, but only in up to 26% of controls ( p < 0.01). Stimulatory antibodies were hardly detected. Antibody reactivity only marginally changed during the course of the disease, independently of the choice of treatment (ursodeoxycholic acid, immunosuppressive therapy, or no medication). There was no correlation with laboratory, clinical or histological parameters, but the antibodies were more frequently found in PBC patients with a benign course (96%) than in patients with active disease progressing to late stages within 10 years (57%; p < 0.01). Proliferation of cells was not influenced by immunoglobulins from PBC-patients.

          Conclusion: Sera from patients with PBC contain inhibitory antibodies to the mAChR3 on cholangiocytes (TFK-1 cells) without influencing TFK-1-cell proliferation. These antibodies were predominantly observed in patients with non-progressing PBC.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: not found
          • Article: not found

          Graves' ophthalmopathy.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Action of Molecular Switches in GPCRs - Theoretical and Experimental Studies

            G protein coupled receptors (GPCRs), also called 7TM receptors, form a huge superfamily of membrane proteins that, upon activation by extracellular agonists, pass the signal to the cell interior. Ligands can bind either to extracellular N-terminus and loops (e.g. glutamate receptors) or to the binding site within transmembrane helices (Rhodopsin-like family). They are all activated by agonists although a spontaneous auto-activation of an empty receptor can also be observed. Biochemical and crystallographic methods together with molecular dynamics simulations and other theoretical techniques provided models of the receptor activation based on the action of so-called “molecular switches” buried in the receptor structure. They are changed by agonists but also by inverse agonists evoking an ensemble of activation states leading toward different activation pathways. Switches discovered so far include the ionic lock switch, the 3-7 lock switch, the tyrosine toggle switch linked with the nPxxy motif in TM7, and the transmission switch. The latter one was proposed instead of the tryptophan rotamer toggle switch because no change of the rotamer was observed in structures of activated receptors. The global toggle switch suggested earlier consisting of a vertical rigid motion of TM6, seems also to be implausible based on the recent crystal structures of GPCRs with agonists. Theoretical and experimental methods (crystallography, NMR, specific spectroscopic methods like FRET/BRET but also single-molecule-force-spectroscopy) are currently used to study the effect of ligands on the receptor structure, location of stable structural segments/domains of GPCRs, and to answer the still open question on how ligands are binding: either via ensemble of conformational receptor states or rather via induced fit mechanisms. On the other hand the structural investigations of homo- and heterodimers and higher oligomers revealed the mechanism of allosteric signal transmission and receptor activation that could lead to design highly effective and selective allosteric or ago-allosteric drugs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis.

              Systemic sclerosis (scleroderma) is characterized by immunologic abnormalities, injury of endothelial cells, and tissue fibrosis. Abnormal oxidative stress has been documented in scleroderma and linked to fibroblast activation. Since platelet-derived growth factor (PDGF) stimulates the production of reactive oxygen species (ROS) and since IgG from patients with scleroderma reacts with human fibroblasts, we tested the hypothesis that patients with scleroderma have serum autoantibodies that stimulate the PDGF receptor (PDGFR), activating collagen-gene expression. We analyzed serum from 46 patients with scleroderma and 75 controls, including patients with other autoimmune diseases, for stimulatory autoantibodies to PDGFR by measuring the production of ROS produced by the incubation of purified IgG with mouse-embryo fibroblasts carrying inactive copies of PDGFR alpha or beta chains or the same cells expressing PDGFR alpha or beta. Generation of ROS was assayed with and without specific PDGFR inhibitors. Antibodies were characterized by immunoprecipitation, immunoblotting, and absorption experiments. Stimulatory antibodies to the PDGFR were found in all the patients with scleroderma. The antibodies recognized native PDGFR, inducing tyrosine phosphorylation and ROS accumulation. Autoantibody activity was abolished by preincubation with cells expressing the PDGFR alpha chain or with recombinant PDGFR or by PDGFR tyrosine kinase inhibitors. Stimulatory PDGFR antibodies selectively induced the Ha-Ras-ERK1/2 and ROS cascades and stimulated type I collagen-gene expression and myofibroblast phenotype conversion in normal human primary fibroblasts. Stimulatory autoantibodies against PDGFR appear to be a specific hallmark of scleroderma. Their biologic activity on fibroblasts strongly suggests that they have a causal role in the pathogenesis of the disease. Copyright 2006 Massachusetts Medical Society.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                30 June 2020
                2020
                : 11
                : 1151
                Affiliations
                [1] 1Department of Internal Medicine II, University of Tuebingen , Tübingen, Germany
                [2] 2Department of Internal Medicine I, University of Tuebingen , Tübingen, Germany
                Author notes

                Edited by: Urs Christen, Goethe University Frankfurt, Germany

                Reviewed by: Patrick Leung, University of California, Davis, United States; Aftab A. Ansari, Emory University School of Medicine, United States

                *Correspondence: Reinhild Klein reinhild.klein@ 123456med.uni-tuebingen.de

                This article was submitted to Autoimmune and Autoinflammatory Disorders, a section of the journal Frontiers in Immunology

                †These authors have contributed equally to this work

                ‡ORCID: Reinhild Klein orcid.org/0000-002-6111-3901

                Article
                10.3389/fimmu.2020.01151
                7339122
                835cd1ce-88f0-47e7-8704-413690bfbae8
                Copyright © 2020 Mayer, Preuss, Grottenthaler, Berg and Klein.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 March 2020
                : 11 May 2020
                Page count
                Figures: 5, Tables: 6, Equations: 0, References: 55, Pages: 13, Words: 8529
                Categories
                Immunology
                Original Research

                Immunology
                primary biliary cholangitis,functional autoantibodies,muscarinic acetylcholine receptor 3,cholangiocytes,chinese hamster ovary cells,disease activity

                Comments

                Comment on this article