7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Temperature sensitive secretion of mutant myocilins.

      Experimental Eye Research
      Cell Line, Cytoskeletal Proteins, secretion, Disulfides, metabolism, Eye Proteins, Genotype, Glaucoma, genetics, Glycoproteins, Humans, Immunoblotting, methods, Mutant Proteins, Mutation, Missense, Phenotype, Protein Conformation, Protein Folding, Temperature, Trabecular Meshwork, physiology, Transfection

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent studies have demonstrated that glaucoma-causing mutant myocilin proteins are misfolded and retained in the endoplasmic reticulum of cells. We showed previously that P370L mutant myocilin is poorly secreted at 37 degrees C and prolonged expression of the protein in differentiated human trabecular meshwork cells results in abnormal morphology and cell killing. Culturing cells at a lower temperature, a condition known to facilitate protein folding, enhances secretion and reverses the cytotoxic effects. We wanted to determine if temperature sensitive secretion is a general property of myocilin missense mutants. Wild-type or mutant forms of myocilin were transiently expressed in HEK 293 cells cultured at either 37 or 30 degrees C and protein secretion was assessed by immunoblotting. Of 15 myocilin missense mutants tested, representing a range in severity of associated glaucoma phenotypes, 14 displayed increased secretion at 30 degrees C. The sole exception was K423E, which is associated with an unusual mode of glaucoma inheritance. Generally, there is an inverse relationship between the degree of mutant myocilin secretion at 30 degrees C and the severity of the associated glaucoma phenotype. Mutants that show abundant secretion at 30 degrees C such as T377M, G364V, I499F and D380A are associated with less virulent glaucoma phenotypes, while mutants such as P370L, I477N, and Y437H display little secretion at 30 degrees C and are associated with more virulent glaucoma phenotypes. We conclude that temperature sensitive secretion is a property of most olfactomedin-domain myocilin mutants. The correlation between temperature sensitive secretion and glaucoma phenotype likely reflects the intrinsic susceptibility to misfolding of individual mutant proteins. These results support the hypothesis that myocilin-induced glaucoma is a protein conformational disease. Facilitating mutant protein folding could be a new approach to development of therapies for this disease.

          Related collections

          Author and article information

          Comments

          Comment on this article