10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The plant stomatal lineage at a glance

      ,

      Journal of Cell Science

      The Company of Biologists

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 66

          • Record: found
          • Abstract: not found
          • Article: not found

          Basic Local Alignment Search Tool

           S Altschul (1990)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis.

            Stomata are specialized epidermal structures that regulate gas (CO(2) and O(2)) and water vapor exchange between plants and their environment. In Arabidopsis thaliana, stomatal development is preceded by asymmetric cell divisions, and stomatal distribution follows the one-cell spacing rule, reflecting the coordination of cell fate specification. Stomatal development and patterning are regulated by both genetic and environmental signals. Here, we report that Arabidopsis MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3) and MPK6, two environmentally responsive mitogen-activated protein kinases (MAPKs), and their upstream MAPK kinases, MKK4 and MKK5, are key regulators of stomatal development and patterning. Loss of function of MKK4/MKK5 or MPK3/MPK6 disrupts the coordinated cell fate specification of stomata versus pavement cells, resulting in the formation of clustered stomata. Conversely, activation of MKK4/MKK5-MPK3/MPK6 causes the suppression of asymmetric cell divisions and stomatal cell fate specification, resulting in a lack of stomatal differentiation. We further establish that the MKK4/MKK5-MPK3/MPK6 module is downstream of YODA, a MAPKKK. The establishment of a complete MAPK signaling cascade as a key regulator of stomatal development and patterning advances our understanding of the regulatory mechanisms of intercellular signaling events that coordinate cell fate specification during stomatal development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The timescale of early land plant evolution

              Significance Establishing the timescale of early land plant evolution is essential to testing hypotheses on the coevolution of land plants and Earth’s System. Here, we establish a timescale for early land plant evolution that integrates over competing hypotheses on bryophyte−tracheophyte relationships. We estimate land plants to have emerged in a middle Cambrian–Early Ordovocian interval, and vascular plants to have emerged in the Late Ordovician−Silurian. This timescale implies an early establishment of terrestrial ecosystems by land plants that is in close accord with recent estimates for the origin of terrestrial animal lineages. Biogeochemical models that are constrained by the fossil record of early land plants, or attempt to explain their impact, must consider a much earlier, middle Cambrian–Early Ordovician, origin.
                Bookmark

                Author and article information

                Journal
                Journal of Cell Science
                J Cell Sci
                The Company of Biologists
                0021-9533
                1477-9137
                April 26 2019
                April 15 2019
                April 26 2019
                April 15 2019
                : 132
                : 8
                : jcs228551
                Article
                10.1242/jcs.228551
                © 2019

                Comments

                Comment on this article