13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Programmed cell death-1, PD-1, is dysregulated in T cells from children with new onset type 1 diabetes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Programmed death cell 1 (PD-1) is an inhibitor of T cell activation and is also functionally linked to glycolysis. We hypothesized that PD-1 expression is defective in activated T cells from children with type 1 diabetes (T1D), resulting in abnormal T cell glucose metabolism.

          Methods

          In this pilot study, we enrolled children with new onset T1D within 2 weeks of diagnosis (T1D), unaffected siblings of T1D (SIBS), unaffected, unrelated children (CTRL), children with new onset, and untreated Crohn disease (CD). We repeated the assays 4–6 months post-diagnosis in T1D (T1D follow up). We analyzed anti-CD3/-CD28-stimulated peripheral blood mononuclear cells (PBMC) subsets for PD-1 expression by flow cytometry at baseline and after 24 h in culture. We measured cytokines in the culture medium by multiplex ELISA and glycolytic capacity with a flux analyzer.

          Results

          We enrolled 37 children. T cells derived from subjects with T1D had decreased PD-1 expression compared to the other study groups. However, in T1D follow-up T cells expressed PD-1 similarly to controls, but had no differences in PBMC cytokine production. Nonetheless, T1D follow up PBMCs had enhanced glycolytic capacity compared to T1D.

          Conclusions

          Activated T cells from T1D fail to upregulate PD-1 upon T-cell receptor stimulation, which may contribute to the pathogenesis of T1D. T1D follow up PBMC expression of PD-1 normalizes, together with a significant increase in glycolysis compared to T1D. Thus, insulin therapy in T1D children is associated with normal PD1 expression and heightened glycolytic capacity in PBMC.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          The Programmed Death-1 (PD-1) Pathway Regulates Autoimmune Diabetes in Nonobese Diabetic (NOD) Mice

          Programmed death-1 (PD-1) receptor, an inhibitory costimulatory molecule found on activated T cells, has been demonstrated to play a role in the regulation of immune responses and peripheral tolerance. We investigated the role of this pathway in the development of autoimmune diabetes. PD-1 or PD-L1 but not PD-L2 blockade rapidly precipitated diabetes in prediabetic female nonobese diabetic (NOD) mice regardless of age (from 1 to 10-wk-old), although it was most pronounced in the older mice. By contrast, cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) blockade induced disease only in neonates. Male NOD mice also developed diabetes after PD-1–PD-L1 pathway blockade, but NOR mice, congenic to NOD but resistant to the development of diabetes, did not. Insulitis scores were significantly higher and frequency of interferon γ–producing GAD-reactive splenocytes was increased after PD-1–PD-L1 pathway blockade compared with controls. Interestingly, PD-L1 but not PD-L2 was found to be expressed on inflamed islets of NOD mice. These data demonstrate a central role for PD-1–PD-L1 interaction in the regulation of induction and progression of autoimmune diabetes in the NOD mouse and provide the rationale to develop new therapies to target this costimulatory pathway in this disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production.

            Programmed death-1 ligand (PD-L)1 and PD-L2 are ligands for programmed death-1 (PD-1), a member of the CD28/CTLA4 family expressed on activated lymphoid cells. PD-1 contains an immunoreceptor tyrosine-based inhibitory motif and mice deficient in PD-1 develop autoimmune disorders suggesting a defect in peripheral tolerance. Human PD-L1 and PD-L2 are expressed on immature dendritic cells (iDC) and mature dendritic cells (mDC), IFN-gamma-treated monocytes, and follicular dendritic cells. Using mAbs, we show that blockade of PD-L2 on dendritic cells results in enhanced T cell proliferation and cytokine production, including that of IFN-gamma and IL-10, while blockade of PD-L1 results in similar, more modest, effects. Blockade of both PD-L1 and PD-L2 showed an additive effect. Both whole mAb and Fab enhanced T cell activation, showing that PD-L1 and PD-L2 function to inhibit T cell activation. Enhancement of T cell activation was most pronounced with weak APC, such as iDCs and IL-10-pretreated mDCs, and less pronounced with strong APC such as mDCs. These data are consistent with the hypothesis that iDC have a balance of stimulatory vs inhibitory molecules that favors inhibition, and indicate that PD-L1 and PD-L2 contribute to the poor stimulatory capacity of iDC. PD-L1 expression differs from PD-L2 in that PD-L1 is expressed on activated T cells, placental trophoblasts, myocardial endothelium, and cortical thymic epithelial cells. In contrast, PD-L2 is expressed on placental endothelium and medullary thymic epithelial cells. PD-L1 is also highly expressed on most carcinomas but minimally expressed on adjacent normal tissue suggesting a role in attenuating antitumor immune responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The PD-1/PD-Ls pathway and autoimmune diseases.

              The programmed death (PD)-1/PD-1 ligands (PD-Ls) pathway, is a new member of the B7/CD28 family, and consists of the PD-1 receptor and its ligands PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC, CD273). Recently, it is reported that PD-1, PD-L1 and PD-L2 also have soluble forms aside from their membrane bound forms. The soluble forms increase the diversity and complexity of PD-1/PD-Ls pathway in both composition and function. The PD-1/PD-Ls pathway is broadly expressed and exerts a wider range of immunoregulatory roles in T-cell activation and tolerance compared with other B7/CD28 family members. Studies show that the PD-1/PD-Ls pathway regulates the induction and maintenance of peripheral tolerance and protects tissues from autoimmune attack in physiological conditions. In addition, it is also involved in various diseases mediated by T cells, such as autoimmunity, tumor immunity, chronic viral infections, and transplantation immunity. In this review, we will summarize the relevance of the soluble forms and the latest researches on the role of PD-1/PD-Ls pathway in autoimmune diseases.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: ResourcesRole: SoftwareRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Data curationRole: MethodologyRole: ResourcesRole: SoftwareRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: MethodologyRole: Software
                Role: Formal analysisRole: InvestigationRole: MethodologyRole: SoftwareRole: Validation
                Role: Project administration
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SoftwareRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SoftwareRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                6 September 2017
                2017
                : 12
                : 9
                : e0183887
                Affiliations
                [1 ] Department of Pediatrics, Texas Tech Health Science Center, El Paso, Texas, United States of America
                [2 ] Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
                [3 ] Department of Pediatrics, Connecticut Children’s Medical Center, Hartford, Connecticut, United States of America
                [4 ] Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
                Children's Hospital Boston, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0003-3911-6732
                Article
                PONE-D-16-30954
                10.1371/journal.pone.0183887
                5587274
                28877189
                8371e5f8-e91b-4615-8a5d-2c400e3b582d
                © 2017 Granados et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 2 August 2016
                : 14 August 2017
                Page count
                Figures: 4, Tables: 1, Pages: 11
                Funding
                This study was supported by Connecticut Children's Medical Center Research Funds. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                White Blood Cells
                T Cells
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Immune Cells
                White Blood Cells
                T Cells
                Biology and Life Sciences
                Immunology
                Immune Cells
                White Blood Cells
                T Cells
                Medicine and Health Sciences
                Immunology
                Immune Cells
                White Blood Cells
                T Cells
                Biology and Life Sciences
                Physiology
                Immune Physiology
                Cytokines
                Medicine and Health Sciences
                Physiology
                Immune Physiology
                Cytokines
                Biology and Life Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Medicine and Health Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Biology and Life Sciences
                Developmental Biology
                Molecular Development
                Cytokines
                Biology and life sciences
                Cell biology
                Cellular types
                Animal cells
                Blood cells
                White blood cells
                T cells
                Cytotoxic T cells
                Biology and life sciences
                Cell biology
                Cellular types
                Animal cells
                Immune cells
                White blood cells
                T cells
                Cytotoxic T cells
                Biology and life sciences
                Immunology
                Immune cells
                White blood cells
                T cells
                Cytotoxic T cells
                Medicine and health sciences
                Immunology
                Immune cells
                White blood cells
                T cells
                Cytotoxic T cells
                Medicine and Health Sciences
                Endocrinology
                Endocrine Disorders
                Diabetes Mellitus
                Medicine and Health Sciences
                Metabolic Disorders
                Diabetes Mellitus
                Medicine and Health Sciences
                Endocrinology
                Diabetic Endocrinology
                Insulin
                Biology and Life Sciences
                Biochemistry
                Hormones
                Insulin
                Biology and Life Sciences
                Biochemistry
                Metabolism
                Carbohydrate Metabolism
                Glucose Metabolism
                Biology and life sciences
                Cell biology
                Signal transduction
                Coreceptors
                CD coreceptors
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                White Blood Cells
                Lymphocytes
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Immune Cells
                White Blood Cells
                Lymphocytes
                Biology and Life Sciences
                Immunology
                Immune Cells
                White Blood Cells
                Lymphocytes
                Medicine and Health Sciences
                Immunology
                Immune Cells
                White Blood Cells
                Lymphocytes
                Custom metadata
                Due to ethical restrictions on data sharing that have been imposed by IRB of Connecticut Children's Medical Center, which is the governing body, data are available upon request. To request access to these data, please contact Dr. Francis DiMario at 860-837-7500. To contact the IRB of Connecticut Children's Medical Center please see the following: http://www.connecticutchildrens.org/our-research/human-research-protection-program/institutional-review-board/contact-us/.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article