9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Comparative Plasmodium gene overexpression reveals distinct perturbation of sporozoite transmission by profilin

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The roles of vital genes, such as those of G-actin–binding proteins, in malaria parasites are underexplored. Overexpression of Plasmodium profilin perturbs actin dynamics only in sporozoites. Strict actin regulation is particularly important for malaria transmission. Mapping of phenotypes can be done by comparative Plasmodium gene overexpression.

          Abstract

          Plasmodium relies on actin-based motility to migrate from the site of infection and invade target cells. Using a substrate-dependent gliding locomotion, sporozoites are able to move at fast speed (1–3 μm/s). This motility relies on a minimal set of actin regulatory proteins and occurs in the absence of detectable filamentous actin (F-actin). Here we report an overexpression strategy to investigate whether perturbations of F-actin steady-state levels affect gliding locomotion and host invasion. We selected two vital Plasmodium berghei G-actin–binding proteins, C-CAP and profilin, in combination with three stage-specific promoters and mapped the phenotypes afforded by overexpression in all three extracellular motile stages. We show that in merozoites and ookinetes, additional expression does not impair life cycle progression. In marked contrast, overexpression of C-CAP and profilin in sporozoites impairs circular gliding motility and salivary gland invasion. The propensity for productive motility correlates with actin accumulation at the parasite tip, as revealed by combinations of an actin-stabilizing drug and transgenic parasites. Strong expression of profilin, but not C-CAP, resulted in complete life cycle arrest. Comparative overexpression is an alternative experimental genetic strategy to study essential genes and reveals effects of regulatory imbalances that are not uncovered from deletion-mutant phenotyping.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          NIH Image to ImageJ: 25 years of image analysis.

          For the past 25 years NIH Image and ImageJ software have been pioneers as open tools for the analysis of scientific images. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A proteomic view of the Plasmodium falciparum life cycle.

            The completion of the Plasmodium falciparum clone 3D7 genome provides a basis on which to conduct comparative proteomics studies of this human pathogen. Here, we applied a high-throughput proteomics approach to identify new potential drug and vaccine targets and to better understand the biology of this complex protozoan parasite. We characterized four stages of the parasite life cycle (sporozoites, merozoites, trophozoites and gametocytes) by multidimensional protein identification technology. Functional profiling of over 2,400 proteins agreed with the physiology of each stage. Unexpectedly, the antigenically variant proteins of var and rif genes, defined as molecules on the surface of infected erythrocytes, were also largely expressed in sporozoites. The detection of chromosomal clusters encoding co-expressed proteins suggested a potential mechanism for controlling gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses.

              Plasmodium berghei and Plasmodium chabaudi are widely used model malaria species. Comparison of their genomes, integrated with proteomic and microarray data, with the genomes of Plasmodium falciparum and Plasmodium yoelii revealed a conserved core of 4500 Plasmodium genes in the central regions of the 14 chromosomes and highlighted genes evolving rapidly because of stage-specific selective pressures. Four strategies for gene expression are apparent during the parasites' life cycle: (i) housekeeping; (ii) host-related; (iii) strategy-specific related to invasion, asexual replication, and sexual development; and (iv) stage-specific. We observed posttranscriptional gene silencing through translational repression of messenger RNA during sexual development, and a 47-base 3' untranslated region motif is implicated in this process.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                Mol. Biol. Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                15 July 2016
                : 27
                : 14
                : 2234-2244
                Affiliations
                [1] aParasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
                [2] eImaging Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
                [3] bInfectious Diseases Interdisciplinary Research Group, Singapore–Massachusetts Institute of Technology Alliance for Research and Technology, 138602 Singapore
                [4] cSchool of BioSciences, University of Melbourne, Parkville, 3010 Victoria, Australia
                [5] dInstitute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
                [6] fDepartamento de Microbiologia, Immunologia e Parasitologia, Universidade Federal de São Paulo, 04039-032 São Paulo, Brazil
                [7] gInstitute of Biology, Humboldt University, 10117 Berlin, Germany
                CEA Grenoble
                Author notes
                *Address correspondence to: Yuko Sato ( yuko@ 123456smart.mit.edu ).
                Article
                E15-10-0734
                10.1091/mbc.E15-10-0734
                4945141
                27226484
                8372faaf-6041-47c5-9680-92d604719d27
                © 2016 Sato et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology.

                History
                : 27 October 2015
                : 09 May 2016
                : 16 May 2016
                Categories
                Articles
                Cell Motility

                Molecular biology
                Molecular biology

                Comments

                Comment on this article