4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phaseolin Attenuates Lipopolysaccharide-Induced Inflammation in RAW 264.7 Cells and Zebrafish

      research-article
      , , *
      Biomedicines
      MDPI
      Kushen, phaseolin, Radix Sophorae flavescentis, inflammation, zebrafish

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Kushen (Radix Sophorae flavescentis) is used to treat ulcerative colitis, tumors, and pruritus. Recently, phaseolin, formononetin, matrine, luteolin, and quercetin, through a network pharmacology approach, were tentatively identified as five bioactive constituents responsible for the anti-inflammatory effects of S. flavescentis. However, the role of phaseolin (one of the primary components of S. flavescentis) in the direct regulation of inflammation and inflammatory processes is not well known. In this study, the beneficial role of phaseolin against inflammation was explored in lipopolysaccharide (LPS)-induced inflammation models of RAW 264.7 macrophages and zebrafish larvae. Phaseolin inhibited LPS-mediated production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), without affecting cell viability. In addition, phaseolin suppressed pro-inflammatory mediators such as cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in a dose-dependent manner. Furthermore, phaseolin reduced matrix metalloproteinase (MMP) activity as well as macrophage adhesion in vitro and the recruitment of leukocytes in vivo by downregulating Ninjurin 1 (Ninj1), an adhesion molecule. Finally, phaseolin inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB). In view of the above, our results suggest that phaseolin could be a potential therapeutic candidate for the management of inflammation.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          NF-κB signaling in inflammation

          The transcription factor NF-κB regulates multiple aspects of innate and adaptive immune functions and serves as a pivotal mediator of inflammatory responses. NF-κB induces the expression of various pro-inflammatory genes, including those encoding cytokines and chemokines, and also participates in inflammasome regulation. In addition, NF-κB plays a critical role in regulating the survival, activation and differentiation of innate immune cells and inflammatory T cells. Consequently, deregulated NF-κB activation contributes to the pathogenic processes of various inflammatory diseases. In this review, we will discuss the activation and function of NF-κB in association with inflammatory diseases and highlight the development of therapeutic strategies based on NF-κB inhibition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Chronic inflammation in the etiology of disease across the life span

            Although intermittent increases in inflammation are critical for survival during physical injury and infection, recent research has revealed that certain social, environmental and lifestyle factors can promote systemic chronic inflammation (SCI) that can, in turn, lead to several diseases that collectively represent the leading causes of disability and mortality worldwide, such as cardiovascular disease, cancer, diabetes mellitus, chronic kidney disease, non-alcoholic fatty liver disease and autoimmune and neurodegenerative disorders. In the present Perspective we describe the multi-level mechanisms underlying SCI and several risk factors that promote this health-damaging phenotype, including infections, physical inactivity, poor diet, environmental and industrial toxicants and psychological stress. Furthermore, we suggest potential strategies for advancing the early diagnosis, prevention and treatment of SCI.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Getting to the site of inflammation: the leukocyte adhesion cascade updated.

              Neutrophil recruitment, lymphocyte recirculation and monocyte trafficking all require adhesion and transmigration through blood-vessel walls. The traditional three steps of rolling, activation and firm adhesion have recently been augmented and refined. Slow rolling, adhesion strengthening, intraluminal crawling and paracellular and transcellular migration are now recognized as separate, additional steps. In neutrophils, a second activation pathway has been discovered that does not require signalling through G-protein-coupled receptors and the signalling steps leading to integrin activation are beginning to emerge. This Review focuses on new aspects of one of the central paradigms of inflammation and immunity--the leukocyte adhesion cascade.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Biomedicines
                Biomedicines
                biomedicines
                Biomedicines
                MDPI
                2227-9059
                13 April 2021
                April 2021
                : 9
                : 4
                : 420
                Affiliations
                School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; sama3575@ 123456naver.com (S.-J.H.); summerai6533@ 123456naver.com (Y.-S.S.)
                Author notes
                [* ]Correspondence: pharm79@ 123456skku.edu ; Tel.: +82-31-290-7731; Fax: +82-50-4363-2221
                Author information
                https://orcid.org/0000-0003-4826-7954
                Article
                biomedicines-09-00420
                10.3390/biomedicines9040420
                8069760
                33924583
                8394e3cf-ef55-4c70-b7f9-99ed23ac5b52
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 23 February 2021
                : 09 April 2021
                Categories
                Article

                kushen,phaseolin,radix sophorae flavescentis,inflammation,zebrafish

                Comments

                Comment on this article