9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      S-nitrosoglutathione reductase-modulated redox signaling controls sodic alkaline stress responses in Solanum lycopersicum L.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          S-Nitrosoglutathione reductase (GSNOR) plays an important role in regulating nitric oxide (NO) and S-nitrosothiol (SNO) homeostasis, and is therefore involved in the modulation of processes mediated by reactive nitrogen species (RNS). Although RNS have emerged as a key component in plant response to abiotic stress, knowledge of their regulation by GSNOR under alkaline stress was lacking. In this study, metabolic regulation of NO and SNOs was investigated in tomato plants of the wild type (WT), GSNOR overexpression lines (OE-1/2) and GSNOR suppression lines (AS-1/2) grown under either control conditions or sodic alkaline stress. Phenotype, photosynthesis, reactive oxygen species (ROS) metabolism, Na(+)-K(+) homeostasis and expression of genes encoding ROS scavenging, Na(+) detoxification and programmed cell death (PCD) were also analyzed. Compared with WT lines, OE-1/2 lines were alkaline tolerant, while AS-1/2 lines were alkaline sensitive. In AS-1/2 lines, although genetic expression of Na(+) detoxification was activated by GSNOR-regulated NO and ROS signaling, excess RNS and ROS accumulation also led to serious oxidative stress and induced PCD. In contrast, overexpression of GSNOR significantly increased ROS scavenging efficiency. Thus, it seemed that increasing alkaline tolerance via GSNOR overexpression in tomato was attributed to the regulation of redox signaling including RNS and ROS.

          Related collections

          Author and article information

          Journal
          Plant Cell Physiol.
          Plant & cell physiology
          Oxford University Press (OUP)
          1471-9053
          0032-0781
          Apr 2015
          : 56
          : 4
          Affiliations
          [1 ] State Key Laboratory of Crop Biology, Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, PR China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China.
          [2 ] State Key Laboratory of Crop Biology, Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, PR China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China qhshi@sdau.edu.cn.
          Article
          pcv007
          10.1093/pcp/pcv007
          25634962
          83987c5e-03c3-4d1b-837d-224538bbac6d
          History

          ROS,Alkaline stress,GSNOR,RNS,S-nitrosylation,Tomato
          ROS, Alkaline stress, GSNOR, RNS, S-nitrosylation, Tomato

          Comments

          Comment on this article