1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Retracted: A Continuous Deep Learning System Study of Tennis Player Health Information and Professional Input

      retraction
      Computational Intelligence and Neuroscience
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A Continuous Deep Learning System Study of Tennis Player Health Information and Professional Input

          Lina Gong (2022)
          The health status of elite tennis players and the results of tennis matches are positively proportional under normal circumstances. The physical and psychological functions of tennis players directly affect the athletic ability of tennis players. With the improvement of people's living standards, people's attention to tennis has also increased. Tennis has received increasing attention in China, and the training of tennis players has become increasingly necessary. However, China is still using the traditional means of obtaining athletes' health information to evaluate athletes' health information. This has led to imperfect research into tennis players' health information and professional input systems. This makes the understanding of the health information of athletes incomplete and profound, and it affects the athletic ability of athletes. In this paper, deep learning and a two-factor model are added to tennis players' health information and professional input, and the feasibility of a deep learning system to comprehensively improve health information input is explored. The experimental results show that the application of the convolutional neural network method in the system improves the response speed to the physical fitness state of tennis players by 5%. This adds technical support for timely understanding of tennis players' physical health information and prevents players from making mistakes on the court due to physical reasons.
            Bookmark

            Author and article information

            Contributors
            Journal
            Comput Intell Neurosci
            Comput Intell Neurosci
            cin
            Computational Intelligence and Neuroscience
            Hindawi
            1687-5265
            1687-5273
            2023
            4 October 2023
            4 October 2023
            : 2023
            : 9797425
            Affiliations
            Article
            10.1155/2023/9797425
            10567473
            37829896
            839d9c25-c83d-4bda-96c2-cdf12f3625cc
            Copyright © 2023 Computational Intelligence and Neuroscience.

            This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

            History
            : 3 October 2023
            : 3 October 2023
            Categories
            Retraction

            Neurosciences
            Neurosciences

            Comments

            Comment on this article