8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Elastomers for biomedical applications

      Journal of Biomaterials Science, Polymer Edition
      Brill Academic Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references271

          • Record: found
          • Abstract: found
          • Article: not found

          Design of an artificial skin. I. Basic design principles.

          Individuals who suffer extensive loss of skin, commonly in fires, are acutely ill, in danger of succumbing either to massive infection of to severe fluid loss. Patients who survive these early threats must often cope with problems of rehabilitation arising from deep, disfiguring scars and crippling contractures. In this report we describe the physiocochemical, biochemical, and mechanical considerations that form the basis for two-stage design of a membrane useful as an experimental wound closure. Stage I of the design, applicable to short-term acute use, calls for a membrane which displaces efficiently air pockets from a carefully prepared woundbed, free of weak boundary layers, and maintains the moisture flux through the wound at an optimal level. Optimization of the surface energy, modulus of elasticity, energy to fracture and moisture permeability of the membrane are among the essential attributes of Stage I design. Stage 2 of the design, applicable to long-term, chronic use, focuses on a nonantigenic membrane which performs as a biodegradable template for synthesis of neodermal tissue. A survey of candidate materials suggests reasons for selection of a porous, crosslinked collagen-glycosaminoglycan coprecipitate as the chemical basis of an evolving design which was initiated 10 years ago. Over the past several years a set of membranes has been iteratively designed on this basis and has been used to cover satisfactorily large experimental full-thickness skin wounds in guinea pigs. Such membranes have effectively protected these wounds from infection and fluid loss for over 25 days without rejection and without requiring change or other invasive manipulation. When appropriately designed for the purpose, the membranes have also strongly retarded wound contraction and have become replaced by newly synthesized, stable connective tissue. Several rules relating the molecular structure and morphology of these membranes to cellular response of adjacent tissue have also been derived. This report is the first in a series which details the methodology of preparation and the record of performance.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Preparation of Phospholipid Polylners and Their Properties as Polymer Hydrogel Membranes

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Design of an artificial skin. II. Control of chemical composition.

              Detailed methodology is described for the reproducible preparation of collagen--glycosaminoglycan (GAG) membranes with known chemical composition. These membranes have been used to cover satisfactorily large experimental full-thickness skin wounds in guinea pigs over the past few years. Such membranes have effectively protected these wounds from infection and fluid loss for over 25 days without rejection and without requiring change or other invasive manipulation. When appropriately designed for the purpose, the membranes have also strongly retarded wound contraction and have become replaced by newly synthesized, stable connective tissue. In our work, purified, fully native collagen from two mammalian sources is precipitated from acid dispersion by addition of chondroitin 6-sulfate. The relative amount of GAG in the coprecipitate varies with the amount of GAG added and with the pH. Since coprecipitated GAG is generally eluted from collagen fibers by physiological fluids, control of the chemical composition of membranes is arrived at by crosslinking the collagen--GAG ionic complex with glutaraldehyde, or, alternately, by use of high-temperature vacuum dehydration. Appropriate use of the crosslinking treatment allows separate study of changes in membrane composition due to elution of GAG by extracellular fluid in animal studies from changes in composition due to enzymatic degradation of the grafted or implanted membrane in these studies. Exhaustive in vitro elution studies extending up to 20 days showed that these crosslinking treatments insolubilize in an apparently permanent manner a fraction of the ionically complexed GAG, although it could not be directly confirmed that glutaraldehyde treatment covalently crosslinks GAG to collagen. By contrast, the available evidence suggests strongly that high-temperature vacuum dehydration leads to formation of chemical bonds between collagen and GAG. Procedures are described for control of insolubilized and "free" GAG in these membranes as well as for control of the molecular weight between crosslinks (Mc). The insolubilized GAG can be controlled in the range 0.5--10 wt. % while "free" GAG can be independently controlled up to at least 25 wt. %; Mc can be controlled in the range 2500--40,000. Studies by infrared spectroscopy have shown that treatment of collagen--GAG membranes by glutaraldehyde or under high-temperature vacuum does not alter the configuration of the collagen triple helix in the membranes. Neither do these treatments modify the native banding pattern of collagen as viewed by electron microscopy. Collagen--GAG membranes appear to be useful as chemically well-characterized, solid macromolecular probes of biomaterial--tissue interactions.
                Bookmark

                Author and article information

                Journal
                Journal of Biomaterials Science, Polymer Edition
                Journal of Biomaterials Science, Polymer Edition
                Brill Academic Publishers
                0920-5063
                1568-5624
                January 1998
                January 1998
                : 9
                : 6
                : 561-626
                Article
                10.1163/156856298X00046
                83b40174-2c46-4cdb-930a-390aefe78687
                © 1998
                History

                Comments

                Comment on this article