16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Caspase 3 activity in isolated fetal rat lung fibroblasts and rat periodontal ligament fibroblasts: cigarette smoke induced alterations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cigarette smoking is the leading cause of preventable death and has been implicated in pathogenesis of pulmonary, oral and systemic diseases. Smoking during pregnancy is a risk factor for the developing fetus and may be a major cause of infant mortality. Moreover, the oral cavity, and all cells within are the first to be exposed to cigarette smoke and may be a possible source for the spread of toxins to other organs of the body. Fibroblasts in general are morphologically heterogeneous connective tissue cells with diverse functions. Apoptosis or programmed cell death is a crucial process during embryogenesis and for the maintenance of homeostasis throughout life. Deregulation of apoptosis has been implicated in abnormal lung development in the fetus and disease progression in adults. Caspases are proteases which belong to the family of cysteine aspartic acid proteases and are key components for downstream amplification of intracellular apoptotic signals. Of 14 known caspases, caspase-3 is the key executioner of apoptosis. In the present study we explored the hypothesis that cigarette smoke (CS) extract activates caspase-3 in two types of fibroblasts, both of which would be exposed directly to cigarette smoke, isolated fetal rat lung fibroblasts and adult rat periodontal ligament (PDL) fibroblasts.

          Methods

          Isolated fetal rat lung fibroblasts and adult PDLs were used. Cells were exposed to different concentrations of CS for 60 min. Caspase-3 activity and its inhibition by Z-VAD-fmk were measured by caspase-3 fluorometric assay. The effect of CSE on cellular viability was measured using the MTT formazan assay. Caspase-3 expression was detected by western blot analysis and cellular localization of caspase-3 was determined by immunofluorescence using fluorescence microscopy.

          Results

          It was observed in fetal rat lung fibroblast cells that CSE extract significantly (p<0.05) increased caspase-3 activity and decrease cell proliferation. However, no significant changes in activity or viability were observed in PDLs.

          Conclusions

          This indicates CS activates caspase-3 the key regulatory point in apoptosis in fetal rat lung fibroblast cells suggesting that smoking during pregnancy may alter the developmental program of fetal lung, jeopardizing the establishment of critical cellular mechanisms necessary to expedite pulmonary maturation at birth.of critical cellular mechanisms necessary to expedite pulmonary maturation at birth.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Caspases: killer proteases

          Caspases (cysteinyl aspartate-specific proteinases) mediate highly specific proteolytic cleavage events in dying cells, which collectively manifest the apoptotic phenotype. The key and central role that these enzymes play in a biochemical cell-suicide pathway has been conserved throughout the evolution of multicellular eukaryotes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prenatal and postnatal environmental tobacco smoke exposure and children's health.

            Children's exposure to tobacco constituents during fetal development and via environmental tobacco smoke (ETS) exposure is perhaps the most ubiquitous and hazardous of children's environmental exposures. A large literature links both prenatal maternal smoking and children's ETS exposure to decreased lung growth and increased rates of respiratory tract infections, otitis media, and childhood asthma, with the severity of these problems increasing with increased exposure. Sudden infant death syndrome, behavioral problems, neurocognitive decrements, and increased rates of adolescent smoking also are associated with such exposures. Studies of each of these problems suggest independent effects of both pre- and postnatal exposure for each, with the respiratory risk associated with parental smoking seeming to be greatest during fetal development and the first several years of life.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Proteases for cell suicide: functions and regulation of caspases.

              Caspases are a large family of evolutionarily conserved proteases found from Caenorhabditis elegans to humans. Although the first caspase was identified as a processing enzyme for interleukin-1beta, genetic and biochemical data have converged to reveal that many caspases are key mediators of apoptosis, the intrinsic cell suicide program essential for development and tissue homeostasis. Each caspase is a cysteine aspartase; it employs a nucleophilic cysteine in its active site to cleave aspartic acid peptide bonds within proteins. Caspases are synthesized as inactive precursors termed procaspases; proteolytic processing of procaspase generates the tetrameric active caspase enzyme, composed of two repeating heterotypic subunits. Based on kinetic data, substrate specificity, and procaspase structure, caspases have been conceptually divided into initiators and effectors. Initiator caspases activate effector caspases in response to specific cell death signals, and effector caspases cleave various cellular proteins to trigger apoptosis. Adapter protein-mediated oligomerization of procaspases is now recognized as a universal mechanism of initiator caspase activation and underlies the control of both cell surface death receptor and mitochondrial cytochrome c-Apaf-1 apoptosis pathways. Caspase substrates have bene identified that induce each of the classic features of apoptosis, including membrane blebbing, cell body shrinkage, and DNA fragmentation. Mice deficient for caspase genes have highlighted tissue- and signal-specific pathways for apoptosis and demonstrated an independent function for caspase-1 and -11 in cytokine processing. Dysregulation of caspases features prominently in many human diseases, including cancer, autoimmunity, and neurodegenerative disorders, and increasing evidence shows that altering caspase activity can confer therapeutic benefits.
                Bookmark

                Author and article information

                Contributors
                Journal
                Tob Induc Dis
                Tob Induc Dis
                Tobacco Induced Diseases
                BioMed Central
                2070-7266
                1617-9625
                2013
                6 December 2013
                : 11
                : 1
                : 25
                Affiliations
                [1 ]Departments of Oral Biology, University of Manitoba and Manitoba Institute for Child Health, Winnipeg, Canada
                [2 ]Human Anatomy and Cell Science, University of Manitoba and Manitoba Institute for Child Health, Winnipeg, Canada
                [3 ]The National Research Council Biodiagnostics Institute, University of Manitoba and Manitoba Institute for Child Health, Winnipeg, Canada
                [4 ]The Biology of Breathing Group, University of Manitoba and Manitoba Institute for Child Health, Winnipeg, Canada
                [5 ]Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada
                Article
                1617-9625-11-25
                10.1186/1617-9625-11-25
                4029472
                24314135
                83c56dea-2d3d-4629-ae6d-e3023d5a7c1f
                Copyright © 2013 Ahmed et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 October 2012
                : 1 December 2013
                Categories
                Research

                Respiratory medicine
                cigarette smoke extract,fetal rat lung fibroblasts,protease,caspase-3,lung development,developmental toxicity,periodontal ligament fibroblast,periodontitis

                Comments

                Comment on this article