24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ancyrocephalidae (Monogenea) of Lake Tanganyika: IV: Cichlidogyrus parasitizing species of Bathybatini (Teleostei, Cichlidae): reduced host-specificity in the deepwater realm?

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: not found
          • Article: not found

          Phylogeny, Ecology, and the Richness of Parasite Communities in Vertebrates

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phylogeny of the Lake Tanganyika cichlid species flock and its relationship to the Central and East African haplochromine cichlid fish faunas.

            Lake Tanganyika, the oldest of the East African Great Lakes, harbors the ecologically, morphologically, and behaviorally most complex of all assemblages of cichlid fishes, consisting of about 200 described species. The evolutionary old age of the cichlid assemblage, its extreme degree of morphological differentiation, the lack of species with intermediate morphologies, and the rapidity of lineage formation have made evolutionary reconstruction difficult. The number and origin of seeding lineages, particularly the possible contribution of riverine haplochromine cichlids to endemic lacustrine lineages, remains unclear. Our phylogenetic analyses, based on mitochondrial DNA sequences of three gene segments of 49 species (25% of all described species, up to 2,400 bp each), yield robust phylogenies that provide new insights into the Lake Tanganyika adaptive radiation as well as into the origin of the Central- and East-African haplochromine faunas. Our data suggest that eight ancient African lineages may have seeded the Tanganyikan cichlid radiation. One of these seeding lineages, probably comprising substrate spawning Lamprologus-like species, diversified into six lineages that evolved mouthbrooding during the initial stage of the radiation. All analyzed haplochromines from surrounding rivers and lakes seem to have evolved within the radiating Tanganyikan lineages. Thus, our findings contradict the current hypothesis that ancestral riverine haplochromines colonized Lake Tanganyika to give rise to at least part of its spectacular endemic cichlid species assemblage. Instead, the early phases of the Tanganyikan radiation affected Central and East African rivers and lakes. The haplochromines may have evolved in the Tanganyikan basin before the lake became a hydrologically and ecologically closed system and then secondarily colonized surrounding rivers. Apparently, therefore, the current diversity of Central and East African haplochromines represents a relatively young and polyphyletic fauna that evolved from or in parallel to lineages now endemic to Lake Tanganyika.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              How specialists can be generalists: resolving the "parasite paradox" and implications for emerging infectious disease

              The parasite paradox arises from the dual observations that parasites (broadly construed, including phytophagous insects) are resource specialists with restricted host ranges, and yet shifts onto relatively unrelated hosts are common in the phylogenetic diversification of parasite lineages and directly observable in ecological time. We synthesize the emerging solution to this paradox: phenotypic flexibility and phylogenetic conservatism in traits related to resource use, grouped under the term ecological fitting, provide substantial opportunities for rapid host switching in changing environments, in the absence of the evolution of novel host-utilization capabilities. We discuss mechanisms behind ecological fitting, its implications for defining specialists and generalists, and briefly review empirical examples of host shifts in the context of ecological fitting. We conclude that host shifts via ecological fitting provide the fuel for the expansion phase of the recently proposed oscillation hypothesis of host range and speciation, and, more generally, the generation of novel combinations of interacting species within the geographic mosaic theory of coevolution. Finally, we conclude that taxon pulses, driven by climate change and large-scale ecological perturbation are drivers of biotic mixing and resultant ecological fitting, which leads to increased rates of rapid host switching, including the agents of Emerging Infectious Disease.
                Bookmark

                Author and article information

                Journal
                Hydrobiologia
                Hydrobiologia
                Springer Nature
                0018-8158
                1573-5117
                April 2015
                August 12 2014
                : 748
                : 1
                : 99-119
                Article
                10.1007/s10750-014-1975-5
                83c9f769-3751-4768-a7ac-07cdd0443737
                © 2014
                History

                Comments

                Comment on this article

                scite_

                Similar content770

                Cited by9

                Most referenced authors466