10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Blue light-mediated transcriptional activation and repression of gene expression in bacteria

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Light-regulated modules offer unprecedented new ways to control cellular behavior in precise spatial and temporal resolution. The availability of such tools may dramatically accelerate the progression of synthetic biology applications. Nonetheless, current optogenetic toolbox of prokaryotes has potential issues such as lack of rapid and switchable control, less portable, low dynamic expression and limited parts. To address these shortcomings, we have engineered a novel bidirectional promoter system for Escherichia coli that can be induced or repressed rapidly and reversibly using the blue light dependent DNA-binding protein EL222. We demonstrated that by modulating the dosage of light pulses or intensity we could control the level of gene expression precisely. We show that both light-inducible and repressible system can function in parallel with high spatial precision in a single cell and can be switched stably between ON- and OFF-states by repetitive pulses of blue light. In addition, the light-inducible and repressible expression kinetics were quantitatively analysed using a mathematical model. We further apply the system, for the first time, to optogenetically synchronize two receiver cells performing different logic behaviors over time using blue light as a molecular clock signal. Overall, our modular approach layers a transformative platform for next-generation light-controllable synthetic biology systems in prokaryotes.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Transcriptional regulatory networks in Saccharomyces cerevisiae.

          We have determined how most of the transcriptional regulators encoded in the eukaryote Saccharomyces cerevisiae associate with genes across the genome in living cells. Just as maps of metabolic networks describe the potential pathways that may be used by a cell to accomplish metabolic processes, this network of regulator-gene interactions describes potential pathways yeast cells can use to regulate global gene expression programs. We use this information to identify network motifs, the simplest units of network architecture, and demonstrate that an automated process can use motifs to assemble a transcriptional regulatory network structure. Our results reveal that eukaryotic cellular functions are highly connected through networks of transcriptional regulators that regulate other transcriptional regulators.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Refinement and standardization of synthetic biological parts and devices.

            The ability to quickly and reliably engineer many-component systems from libraries of standard interchangeable parts is one hallmark of modern technologies. Whether the apparent complexity of living systems will permit biological engineers to develop similar capabilities is a pressing research question. We propose to adapt existing frameworks for describing engineered devices to biological objects in order to (i) direct the refinement and use of biological 'parts' and 'devices', (ii) support research on enabling reliable composition of standard biological parts and (iii) facilitate the development of abstraction hierarchies that simplify biological engineering. We use the resulting framework to describe one engineered biological device, a genetically encoded cell-cell communication receiver named BBa_F2620. The description of the receiver is summarized via a 'datasheet' similar to those widely used in engineering. The process of refinement and characterization leading to the BBa_F2620 datasheet may serve as a starting template for producing many standardized genetically encoded objects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synthetic biology: engineering Escherichia coli to see light.

              We have designed a bacterial system that is switched between different states by red light. The system consists of a synthetic sensor kinase that allows a lawn of bacteria to function as a biological film, such that the projection of a pattern of light on to the bacteria produces a high-definition (about 100 megapixels per square inch), two-dimensional chemical image. This spatial control of bacterial gene expression could be used to 'print' complex biological materials, for example, and to investigate signalling pathways through precise spatial and temporal control of their phosphorylation steps.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                19 August 2016
                28 June 2016
                28 June 2016
                : 44
                : 14
                : 6994-7005
                Affiliations
                [1 ]Department of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
                [2 ]School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +65 6514 1088; Fax: +65 6794 7553; Email: clpoh@ 123456ntu.edu.sg
                Article
                10.1093/nar/gkw548
                5001607
                27353329
                83cfe460-0661-439f-bfe3-59f22ce2c5d3
                © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 06 June 2016
                : 19 May 2016
                : 22 March 2016
                Page count
                Pages: 12
                Categories
                1
                Synthetic Biology and Bioengineering
                Custom metadata
                19 August 2016

                Genetics
                Genetics

                Comments

                Comment on this article