3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Regulation of the interaction between the neuronal BIN1 isoform 1 and Tau proteins - role of the SH3 domain

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          BAR domains as sensors of membrane curvature: the amphiphysin BAR structure.

          The BAR (Bin/amphiphysin/Rvs) domain is the most conserved feature in amphiphysins from yeast to human and is also found in endophilins and nadrins. We solved the structure of the Drosophila amphiphysin BAR domain. It is a crescent-shaped dimer that binds preferentially to highly curved negatively charged membranes. With its N-terminal amphipathic helix and BAR domain (N-BAR), amphiphysin can drive membrane curvature in vitro and in vivo. The structure is similar to that of arfaptin2, which we find also binds and tubulates membranes. From this, we predict that BAR domains are in many protein families, including sorting nexins, centaurins, and oligophrenins. The universal and minimal BAR domain is a dimerization, membrane-binding, and curvature-sensing module.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology

            Genome-wide association studies (GWAS) have identified a region upstream the BIN1 gene as the most important genetic susceptibility locus in Alzheimer's disease (AD) after APOE. We report that BIN1 transcript levels were increased in AD brains and identified a novel 3 bp insertion allele ∼28 kb upstream of BIN1, which increased (i) transcriptional activity in vitro, (ii) BIN1 expression levels in human brain and (iii) AD risk in three independent case-control cohorts (Meta-analysed Odds ratio of 1.20 (1.14–1.26) (P=3.8 × 10−11)). Interestingly, decreased expression of the Drosophila BIN1 ortholog Amph suppressed Tau-mediated neurotoxicity in three different assays. Accordingly, Tau and BIN1 colocalized and interacted in human neuroblastoma cells and in mouse brain. Finally, the 3 bp insertion was associated with Tau but not Amyloid loads in AD brains. We propose that BIN1 mediates AD risk by modulating Tau pathology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis.

              Amphiphysin, a protein that is highly concentrated in nerve terminals, has been proposed to function as a linker between the clathrin coat and dynamin in the endocytosis of synaptic vesicles. Here, using a cell-free system, we provide direct morphological evidence in support of this hypothesis. Unexpectedly, we also find that amphiphysin-1, like dynamin-1, can transform spherical liposomes into narrow tubules. Moreover, amphiphysin-1 assembles with dynamin-1 into ring-like structures around the tubules and enhances the liposome-fragmenting activity of dynamin-1 in the presence of GTP. These results show that amphiphysin binds lipid bilayers, indicate a potential function for amphiphysin in the changes in bilayer curvature that accompany vesicle budding, and imply a close functional partnership between amphiphysin and dynamin in endocytosis.
                Bookmark

                Author and article information

                Journal
                The FEBS Journal
                FEBS J
                Wiley
                1742464X
                October 2017
                October 2017
                August 30 2017
                : 284
                : 19
                : 3218-3229
                Affiliations
                [1 ]Lille University; CNRS UMR8576; Lille France
                [2 ]Lille University; INSERM UMR1167; Pasteur Institute of Lille; Lille France
                Article
                10.1111/febs.14185
                28755476
                83eda88c-7c38-4c4d-8852-13500bc7b61e
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article