+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dehydrozingerone exerts beneficial metabolic effects in high-fat diet-induced obese mice viaAMPK activation in skeletal muscle

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Dehydrozingerone (DHZ) exerts beneficial effects on human health; however, its mechanism of action remains unclear. Here, we found that DHZ suppressed high-fat diet-induced weight gain, lipid accumulation and hyperglycaemia in C57BL/6 mice and increased AMP-activated protein kinase (AMPK) phosphorylation and stimulated glucose uptake in C2C12 skeletal muscle cells. DHZ activated p38 mitogen-activated protein kinase (MAPK) signalling in an AMPK-dependent manner. Inhibiting AMPK or p38 MAPK blocked DHZ-induced glucose uptake. DHZ increased GLUT4 (major transporter for glucose uptake) expression in skeletal muscle. Glucose clearance and insulin-induced glucose uptake increased in DHZ-fed animals, suggesting that DHZ increases systemic insulin sensitivity in vivo. Thus, the beneficial health effects of DHZ could possibly be explained by its ability to activate the AMPK pathway in skeletal muscle.

          Related collections

          Most cited references 36

          • Record: found
          • Abstract: found
          • Article: not found

          AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism.

          The AMP-activated protein kinase (AMPK) is an evolutionarily conserved sensor of cellular energy status, and recent data demonstrate that it also plays a critical role in systemic energy balance. AMPK integrates nutritional and hormonal signals in peripheral tissues and the hypothalamus. It mediates effects of adipokines (leptin, adiponectin, and possibly resistin) in regulating food intake, body weight, and glucose and lipid homeostasis. AMPK is regulated by upstream kinases of which the tumor suppressor, LKB1, is the first to be identified. Complex signaling networks suggest that AMPK may prevent insulin resistance, in part by inhibiting pathways that antagonize insulin signaling. Through signaling, metabolic, and gene expression effects, AMPK enhances insulin sensitivity and fosters a metabolic milieu that may reduce the risk for obesity and type 2 diabetes.
            • Record: found
            • Abstract: found
            • Article: not found

            Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade

            Background The AMP-activated protein kinase (AMPK) cascade is a sensor of cellular energy charge that acts as a 'metabolic master switch' and inhibits cell proliferation. Activation requires phosphorylation of Thr172 of AMPK within the activation loop by upstream kinases (AMPKKs) that have not been identified. Recently, we identified three related protein kinases acting upstream of the yeast homolog of AMPK. Although they do not have obvious mammalian homologs, they are related to LKB1, a tumor suppressor that is mutated in the human Peutz-Jeghers cancer syndrome. We recently showed that LKB1 exists as a complex with two accessory subunits, STRADα/β and MO25α/β. Results We report the following observations. First, two AMPKK activities purified from rat liver contain LKB1, STRADα and MO25α, and can be immunoprecipitated using anti-LKB1 antibodies. Second, both endogenous and recombinant complexes of LKB1, STRADα/β and MO25α/β activate AMPK via phosphorylation of Thr172. Third, catalytically active LKB1, STRADα or STRADβ and MO25α or MO25β are required for full activity. Fourth, the AMPK-activating drugs AICA riboside and phenformin do not activate AMPK in HeLa cells (which lack LKB1), but activation can be restored by stably expressing wild-type, but not catalytically inactive, LKB1. Fifth, AICA riboside and phenformin fail to activate AMPK in immortalized fibroblasts from LKB1-knockout mouse embryos. Conclusions These results provide the first description of a physiological substrate for the LKB1 tumor suppressor and suggest that it functions as an upstream regulator of AMPK. Our findings indicate that the tumors in Peutz-Jeghers syndrome could result from deficient activation of AMPK as a consequence of LKB1 inactivation.
              • Record: found
              • Abstract: found
              • Article: not found

              The AMP-activated protein kinase pathway--new players upstream and downstream.

              The AMP-activated protein kinase (AMPK) cascade is a sensor of cellular energy status. Whenever the cellular ATP:ADP ratio falls, owing to a stress that inhibits ATP production or increases ATP consumption, this is amplified by adenylate kinase into a much larger increase in the AMP:ATP ratio. AMP activates the system by binding to two tandem domains on the gamma subunits of AMPK, and this is antagonized by high concentrations of ATP. AMP binding causes activation by a sensitive mechanism involving phosphorylation of AMPK by the tumour suppressor LKB1. Once activated, AMPK switches on catabolic pathways that generate ATP while switching off ATP-consuming processes. As well as acting at the level of the individual cell, the system also regulates food intake and energy expenditure at the whole body level, in particular by mediating the effects of hormones and cytokines such as leptin, adiponectin and ghrelin. A particularly interesting downstream target recently identified is TSC2 (tuberin). The LKB1-->AMPK-->TSC2 pathway negatively regulates the target of rapamycin (TOR), and this appears to be responsible for limiting protein synthesis and cell growth, and protecting against apoptosis, during cellular stresses such as glucose starvation.

                Author and article information

                [a ]Department of Anatomy, Korea University College of Medicine Seoul, South Korea
                [b ]Department of Internal Medicine, Yonsei University Wonju College of Medicine Wonju, South Korea
                [c ]Seoul Science High School Seoul, South Korea
                Author notes
                Correspondence to: Hyeon Soo KIM, Department of Anatomy, Korea University College of Medicine, Seoul 136-701, Korea., Tel.: 82-2-920-6151, Fax: 82-2-929-5696, E-mail: anatomykim@
                J Cell Mol Med
                J. Cell. Mol. Med
                Journal of Cellular and Molecular Medicine
                BlackWell Publishing Ltd (Oxford, UK )
                March 2015
                12 January 2015
                : 19
                : 3
                : 620-629
                © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                Original Articles

                Molecular medicine

                glucose uptake, metabolism, dehydrozingerone, curcumin analogue, ampk


                Comment on this article