14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IFNGR1 signaling is associated with adverse pregnancy outcomes during infection with malaria parasites

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Complicated/severe cases of placental pathology due to Plasmodium falciparum and P. vivax, especially adverse pregnancy outcomes during P. vivax infection, have been increasing in recent years. However, the pathogenesis of placental pathology during severe malaria is poorly understood, while responses against IFN-γ are thought to be associated with adverse pregnancy outcomes. In the present study, we explored the role of IFN-γ receptor 1 (IFNGR1) signaling in placental pathology during severe malaria using luciferase-expressing rodent malaria parasites, P. berghei NK65 ( PbNK65L). We detected luciferase activities in the lung, spleen, adipose tissue, and placenta in pregnant mice, suggesting that infected erythrocytes could accumulate in various organs during infection. Importantly, we found that fetal mortality in IFNGR1-deficient mice infected with PbNK65L parasites was much less than in infected wild type (WT) mice. Placental pathology was also improved in IFNGR1-deficient mice. In contrast, bioluminescence imaging showed that parasite accumulation in the placentas of IFNGR1-deficient pregnant mice was comparable to that in WT mice infected with PbNK65L. These findings suggest that IFNGR1 signaling plays a pivotal role in placental pathology and subsequent adverse pregnancy outcomes during severe malaria. Our findings may increase our understanding of how disease aggravation occurs during malaria during pregnancy.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta.

          Women are particularly susceptible to malaria during first and second pregnancies, even though they may have developed immunity over years of residence in endemic areas. Plasmodium falciparum-infected red blood cells (IRBCs) were obtained from human placentas. These IRBCs bound to purified chondroitin sulfate A (CSA) but not to other extracellular matrix proteins or to other known IRBC receptors. IRBCs from nonpregnant donors did not bind to CSA. Placental IRBCs adhered to sections of fresh-frozen human placenta with an anatomic distribution similar to that of naturally infected placentas, and this adhesion was competitively inhibited by purified CSA. Thus, adhesion to CSA appears to select for a subpopulation of parasites that causes maternal malaria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immune response in mice that lack the interferon-gamma receptor.

            Interferon-gamma (IFN-gamma) exerts pleiotropic effects, including antiviral activity, stimulation of macrophages and natural killer cells, and increased expression of major histocompatibility complex antigens. Mice without the IFN-gamma receptor had no overt anomalies, and their immune system appeared to develop normally. However, mutant mice had a defective natural resistance, they had increased susceptibility to infection by Listeria monocytogenes and vaccinia virus despite normal cytotoxic and T helper cell responses. Immunoglobulin isotype analysis revealed that IFN-gamma is necessary for a normal antigen-specific immunoglobulin G2a response. These mutant mice offer the possibility for the further elucidation of IFN-gamma-mediated functions by transgenic cell- or tissue-specific reconstitution of a functional receptor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Malaria in pregnancy: pathogenesis and immunity.

              Understanding of the biological basis for susceptibility to malaria in pregnancy was recently advanced by the discovery that erythrocytes infected with Plasmodium falciparum accumulate in the placenta through adhesion to molecules such as chondroitin sulphate A. Antibody recognition of placental infected erythrocytes is dependent on sex and gravidity, and could protect from malaria complications. Moreover, a conserved parasite gene-var2csa-has been associated with placental malaria, suggesting that its product might be an appropriate vaccine candidate. By contrast, our understanding of placental immunopathology and how this contributes to anaemia and low birthweight remains restricted, although inflammatory cytokines produced by T cells, macrophages, and other cells are clearly important. Studies that unravel the role of host response to malaria in pathology and protection in the placenta, and that dissect the relation between timing of infection and outcome, could allow improved targeting of preventive treatments and development of a vaccine for use in pregnant women.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Formal analysisRole: Funding acquisition
                Role: Data curationRole: Investigation
                Role: Formal analysis
                Role: ConceptualizationRole: Formal analysisRole: Funding acquisitionRole: MethodologyRole: Project administrationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                8 November 2017
                2017
                : 12
                : 11
                : e0185392
                Affiliations
                [1 ] Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
                [2 ] Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
                Ehime Daigaku, JAPAN
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Article
                PONE-D-17-16667
                10.1371/journal.pone.0185392
                5678718
                29117241
                84021d82-05da-47cb-a686-11f557780941
                © 2017 Niikura et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 1 May 2017
                : 12 September 2017
                Page count
                Figures: 5, Tables: 1, Pages: 16
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100001691, Japan Society for the Promotion of Science;
                Award ID: 15K08451
                Award Recipient :
                Funded by: Japan Society for the Promotion of Science
                Award ID: 15K08449
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100001691, Japan Society for the Promotion of Science;
                Award ID: 15K19085
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100009619, Japan Agency for Medical Research and Development;
                Award Recipient :
                This work was supported by Japan Society for the Promotion of Science 15K08451 to Dr. Fumie Kobayashi; Japan Society for the Promotion of Science 15K08449 to Dr Mamoru Niikura; Japan Society for the Promotion of Science 15K19085 to Dr Shin–Ichi Inoue; Japan Agency for Medical Research and Development to Dr. Fumie Kobayashi.
                Categories
                Research Article
                Medicine and Health Sciences
                Parasitic Diseases
                Biology and Life Sciences
                Organisms
                Eukaryota
                Protozoans
                Parasitic Protozoans
                Malarial Parasites
                Medicine and Health Sciences
                Parasitic Diseases
                Malaria
                Medicine and Health Sciences
                Tropical Diseases
                Malaria
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                Red Blood Cells
                Biology and Life Sciences
                Developmental Biology
                Embryology
                Placenta
                Biology and Life Sciences
                Anatomy
                Reproductive System
                Placenta
                Medicine and Health Sciences
                Anatomy
                Reproductive System
                Placenta
                Biology and Life Sciences
                Parasitology
                Parasite Groups
                Apicomplexa
                Plasmodium
                Research and Analysis Methods
                Experimental Organism Systems
                Model Organisms
                Mouse Models
                Research and Analysis Methods
                Model Organisms
                Mouse Models
                Research and Analysis Methods
                Experimental Organism Systems
                Animal Models
                Mouse Models
                Biology and Life Sciences
                Physiology
                Immune Physiology
                Cytokines
                Medicine and Health Sciences
                Physiology
                Immune Physiology
                Cytokines
                Biology and Life Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Medicine and Health Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Biology and Life Sciences
                Developmental Biology
                Molecular Development
                Cytokines
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article