21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ionic regulatory strategies of crabs: the transition from water to land

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Terrestrial crabs (brachyurans and anomurans) have invaded land following a variety of pathways from marine and/or via freshwater environments. This transition from water to land requires physiological, ecological, and behavioral adaptations to allow the exploitation of these new environmental conditions. Arguably, the management of salt and water balance (e.g., osmoregulation) is integral for their survival and success in an environment where predominantly low-salinity aquatic (e.g., freshwater) water sources are found, sometimes in only minimal amounts. This requires a suite of morphological and biochemical modifications, especially at the branchial chamber of semi-terrestrial and terrestrial crabs to allow reprocessing of urine to maximize ion uptake. Using knowledge gained from electrophysiology, biochemistry, and more recent molecular biology techniques, we present summarized updated models for ion transport for all major taxonomic groups of terrestrial crabs. This is an exciting and fast-moving field of research, and we hope that this review will stimulate further study. Terrestrial crabs retain their crown as the ideal model group for studying the evolutionary pathways that facilitated terrestrial invasion.

          Related collections

          Most cited references180

          • Record: found
          • Abstract: found
          • Article: not found

          Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation.

          Adaptation to a sudden extreme change in environment, beyond the usual range of background environmental fluctuations, is analysed using a quantitative genetic model of phenotypic plasticity. Generations are discrete, with time lag tau between a critical period for environmental influence on individual development and natural selection on adult phenotypes. The optimum phenotype, and genotypic norms of reaction, are linear functions of the environment. Reaction norm elevation and slope (plasticity) vary among genotypes. Initially, in the average background environment, the character is canalized with minimum genetic and phenotypic variance, and no correlation between reaction norm elevation and slope. The optimal plasticity is proportional to the predictability of environmental fluctuations over time lag tau. During the first generation in the new environment the mean fitness suddenly drops and the mean phenotype jumps towards the new optimum phenotype by plasticity. Subsequent adaptation occurs in two phases. Rapid evolution of increased plasticity allows the mean phenotype to closely approach the new optimum. The new phenotype then undergoes slow genetic assimilation, with reduction in plasticity compensated by genetic evolution of reaction norm elevation in the original environment.
            • Record: found
            • Abstract: found
            • Article: not found

            The large genome constraint hypothesis: evolution, ecology and phenotype.

            If large genomes are truly saturated with unnecessary 'junk' DNA, it would seem natural that there would be costs associated ith accumulation and replication of this excess DNA. Here we examine the available evidence to support this hypothesis, which we term the 'large genome constraint'. We examine the large genome constraint at three scales: evolution, ecology, and the plant phenotype. In evolution, we tested the hypothesis that plant lineages with large genomes are diversifying more slowly. We found that genera with large genomes are less likely to be highly specious -- suggesting a large genome constraint on speciation. In ecology, we found that species with large genomes are under-represented in extreme environments -- again suggesting a large genome constraint for the distribution and abundance of species. Ultimately, if these ecological and evolutionary constraints are real, the genome size effect must be expressed in the phenotype and confer selective disadvantages. Therefore, in phenotype, we review data on the physiological correlates of genome size, and present new analyses involving maximum photosynthetic rate and specific leaf area. Most notably, we found that species with large genomes have reduced maximum photosynthetic rates - again suggesting a large genome constraint on plant performance. Finally, we discuss whether these phenotypic correlations may help explain why species with large genomes are trimmed from the evolutionary tree and have restricted ecological distributions. Our review tentatively supports the large genome constraint hypothesis.
              • Record: found
              • Abstract: found
              • Article: not found

              Phenotypic plasticity in development and evolution: facts and concepts. Introduction.

              This theme issue pursues an exploration of the potential of taking into account the environmental sensitivity of development to explaining the evolution of metazoan life cycles, with special focus on complex life cycles and the role of developmental plasticity. The evolution of switches between alternative phenotypes as a response to different environmental cues and the evolution of the control of the temporal expression of alternative phenotypes within an organism's life cycle are here treated together as different dimensions of the complex relationships between genotype and phenotype, fostering the emergence of a more general and comprehensive picture of phenotypic evolution through a quite diverse sample of case studies. This introductory article reviews fundamental facts and concepts about phenotypic plasticity, adopting the most authoritative terminology in use in the current literature. The main topics are types and components of phenotypic variation, the evolution of organismal traits through plasticity, the origin and evolution of phenotypic plasticity and its adaptive value.

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                27 September 2024
                2024
                : 15
                : 1399194
                Affiliations
                [1] 1 Croatian Academy of Sciences and Arts , Department of Natural Sciences , Zagreb, Croatia
                [2] 2 Marine Biology and Ecology Research Centre , School of Biological and Marine Sciences , University of Plymouth , Plymouth, United Kingdom
                Author notes

                Edited by: Fernando Diaz, Center for Scientific Research and Higher Education in Ensenada (CICESE), Mexico

                Reviewed by: Carlos Rosas, National Autonomous University of Mexico, Mexico

                Raymond P. Henry, Auburn University, United States

                Jehan-Hervé Lignot, Université de Montpellier, France

                *Correspondence: Lucy M. Turner, lucy.m.turner@ 123456plymouth.ac.uk
                Article
                1399194
                10.3389/fphys.2024.1399194
                11467477
                39397859
                84027892-3c69-43a4-8b6f-4ea51f561733
                Copyright © 2024 Lucu and Turner.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 March 2024
                : 25 June 2024
                Funding
                The author(s) declare that financial support was received for the research, authorship, and/or publication of this article.
                Categories
                Physiology
                Review
                Custom metadata
                Aquatic Physiology

                Anatomy & Physiology
                brachyura,anomura,na+/k+-atpase (nka),v-type h+-atpase (vha),gill,branchiostegal lung,antennal gland,transporters

                Comments

                Comment on this article

                Related Documents Log