2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Microwave‐Induced Metal Dissolution Synthesis of Core–Shell Copper Nanowires/ZnS for Visible Light Photocatalytic H 2 Evolution

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: not found
          • Article: not found

          Electrochemical Photolysis of Water at a Semiconductor Electrode

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A metal-free polymeric photocatalyst for hydrogen production from water under visible light.

            The production of hydrogen from water using a catalyst and solar energy is an ideal future energy source, independent of fossil reserves. For an economical use of water and solar energy, catalysts that are sufficiently efficient, stable, inexpensive and capable of harvesting light are required. Here, we show that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor. Contrary to other conducting polymer semiconductors, carbon nitride is chemically and thermally stable and does not rely on complicated device manufacturing. The results represent an important first step towards photosynthesis in general where artificial conjugated polymer semiconductors can be used as energy transducers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Noble metal-free hydrogen evolution catalysts for water splitting.

              Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Energy Materials
                Adv. Energy Mater.
                Wiley
                1614-6832
                1614-6840
                June 12 2019
                June 2019
                April 24 2019
                June 2019
                : 9
                : 22
                : 1900775
                Affiliations
                [1 ]SZU‐NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
                [2 ]Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
                [3 ]International Joint Lab on Resource ChemistryCollege of Chemistry and Materials ScienceShanghai Normal University Shanghai 200234 China
                [4 ]National University of Singapore (Suzhou) Research Institute 377 Lin Quan Street, Suzhou Industrial Park Jiangsu 215123 China
                [5 ]Department of PhysicsNational University of Singapore 2 Science Drive 3 Singapore 117542 Singapore
                Article
                10.1002/aenm.201900775
                84054ec5-d6bf-45bd-9c19-6a4f58738dd9
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article