+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sphingosine kinase 1 as an anticancer therapeutic target

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The development of chemotherapeutic resistance is a major challenge in oncology. Elevated sphingosine kinase 1 (SK1) levels is predictive of a poor prognosis, and SK1 overexpression may confer resistance to chemotherapeutics. The SK/sphingosine-1-phosphate (S1P)/sphingosine-1-phosphate receptor (S1PR) signaling pathway has been implicated in the progression of various cancers and in chemotherapeutic drug resistance. Therefore, SK1 may represent an important target for cancer therapy. Targeting the SK/S1P/S1PR signaling pathway may be an effective anticancer therapeutic strategy, particularly in the context of overcoming drug resistance. This review summarizes our current understanding of the role of SK/S1P/S1PR signaling in cancer and development of SK1 inhibitors.

          Related collections

          Most cited references 62

          • Record: found
          • Abstract: found
          • Article: not found

          Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis.

          Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid mediator that promotes breast cancer progression by diverse mechanisms that remain somewhat unclear. Here we report pharmacologic evidence of a critical role for sphingosine kinase 1 (SphK1) in producing S1P and mediating tumor-induced hemangiogenesis and lymphangiogenesis in a murine model of breast cancer metastasis. S1P levels increased both in the tumor and the circulation. In agreement, serum S1P levels were significantly elevated in stage IIIA human breast cancer patients, compared with age/ethnicity-matched healthy volunteers. However, treatment with the specific SphK1 inhibitor SK1-I suppressed S1P levels, reduced metastases to lymph nodes and lungs, and decreased overall tumor burden of our murine model. Both S1P and angiopoietin 2 (Ang2) stimulated hemangiogenesis and lymphangiogenesis in vitro, whereas SK1-I inhibited each process. We quantified both processes in vivo from the same specimen by combining directed in vivo angiogenesis assays with fluorescence-activated cell sorting, thereby confirming the results obtained in vitro. Notably, SK1-I decreased both processes not only at the primary tumor but also in lymph nodes, with peritumoral lymphatic vessel density reduced in SK1-I-treated animals. Taken together, our findings show that SphK1-produced S1P is a crucial mediator of breast cancer-induced hemangiogenesis and lymphangiogenesis. Our results implicate SphK1 along with S1P as therapeutic targets in breast cancer. ©2012 AACR.
            • Record: found
            • Abstract: found
            • Article: not found

            Sphingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines.

            Sphingosine-1-phosphate is a bioactive lipid that is mitogenic for human glioma cell lines by signaling through its G protein-coupled receptors. We investigated the role of sphingosine-1-phosphate receptors and the enzymes that form sphingosine-1-phosphate, sphingosine kinase (SphK)-1, and -2 in human astrocytomas. Astrocytomas of various histologic grades expressed three types of sphingosine-1-phosphate receptors, S1P1, S1P2, and S1P3; however, no significant correlation with histologic grade or patient survival was detected. Expression of SphK1, but not SphK2, in human astrocytoma grade 4 (glioblastoma multiforme) tissue correlated with short patient survival. Patients whose tumors had low SphK1 expression survived a median 357 days, whereas those with high levels of SphK1 survived a median 102 days. Decreasing SphK1 expression using RNA interference or pharmacologic inhibition of SphK significantly decreased the rate of proliferation of U-1242 MG and U-87 MG glioblastoma cell lines. Surprisingly, RNA interference to knockdown SphK2 expression inhibited glioblastoma cell proliferation more potently than did SphK1 knockdown. SphK knockdown also prevented cells from exiting G1 phase of the cell cycle and marginally increased apoptosis. Thus, SphK isoforms may be major contributors to growth of glioblastoma cells in vitro and to aggressive behavior of glioblastoma multiforme.
              • Record: found
              • Abstract: found
              • Article: not found

              Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer.

              Beside their structural role for the cell membrane the family of sphingolipids act as effector molecules in signal transduction with links to various aspects of cancer initiation, progression and treatment response. The "sphingolipid rheostat" balances between apoptosis inducing ceramid and growth promoting sphingosine-1-phosphate. We analyzed gene expression of 43 proteins from this pathway in different subtypes of breast cancer using microarray data of 1,269 tumor samples (test set n=171; validation sets n=1098) and observed significant differences for several genes. Sphingosine kinase 1 (SPHK1), ceramide galactosyltransferase (UGT8), and Ganglioside GD3-Synthase (ST8SIA1) displayed higher expression among ER negative tumors. In contrast, glucosylceramidsynthase (GCS), dihydroceramidsynthases (LASS4, LASS 6) and acid ceramidase (ASAH1) were higher expressed in ER positive samples. Survival analysis revealed a worse outcome of patients with high SPHK1 expression. To avoid a confounding effect of the ER status we also restricted the analysis to 750 patients with ER positive tumors. Again a worse outcome was observed for tumors displaying high SPHK1 expression. While 75.8+/-1.9% of the patients with tumors low in SPHK1 expression were free of metastasis at 5 years, this was the case for only 64.9+/-3.6% of patients with tumors displaying high SPHK1 expression (P=0.008). Immunohistochemistry identified the carcinoma cells as the major source of SPHK1 expression in the tumor. The correlation of SPHK1 with a poor prognosis as well as its high expression among ER negative tumors are in line with the antiapoptotic and proliferative properties of its product sphingosine-1-phosphate. Targeting of the sphingolipid rheostat may thus open new treatment options.

                Author and article information

                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                23 June 2015
                : 9
                : 3239-3245
                [1 ]Department of Radiotherapy Oncology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
                [2 ]Department of Neurology, First Affiliated Hospital of Xi’an Medical University, Xi’an, People’s Republic of China
                [3 ]School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People’s Republic of China
                Author notes
                Correspondence: Ying Gao; Dong-li Zhao, Department of Radiotherapy Oncology, First Affiliated Hospital of Xi’an Jiaotong University, 277 Yan Ta West Road, Xi’an city, Xi’an 710061, People’s Republic of China, Tel +86 029 8532 4029, Email togaoying@ 123456163.com ; jdyfy223@ 123456163.com

                These authors contributed equally to this work

                © 2015 Gao et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.


                Pharmacology & Pharmaceutical medicine

                cancer, therapy, s1pr, inhibitors, sphingosine kinase 1, s1p


                Comment on this article