9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Drought-tolerant Desmodium species effectively suppress parasitic striga weed and improve cereal grain yields in western Kenya

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstracts

          The parasitic weed Striga hermonthica Benth. (Orobanchaceae), commonly known as striga, is an increasingly important constraint to cereal production in sub-Saharan Africa (SSA), often resulting in total yield losses in maize ( Zea mays L.) and substantial losses in sorghum ( Sorghum bicolor (L.) Moench). This is further aggravated by soil degradation and drought conditions that are gradually becoming widespread in SSA. Forage legumes in the genus Desmodium (Fabaceae), mainly D. uncinatum and D. intortum, effectively control striga and improve crop productivity in SSA. However, negative effects of climate change such as drought stress is affecting the functioning of these systems. There is thus a need to identify and characterize new plants possessing the required ecological chemistry to protect crops against the biotic stress of striga under such environmental conditions. 17 accessions comprising 10 species of Desmodium were screened for their drought stress tolerance and ability to suppress striga. Desmodium incanum and D. ramosissimum were selected as the most promising species as they retained their leaves and maintained leaf function for longer periods during their exposure to drought stress conditions. They also had desirable phenotypes with more above ground biomass. The two species suppressed striga infestation, both under controlled and field conditions, and resulted in significant grain yield increases, demonstrating the incremental capability of Desmodium species in striga suppression. These results demonstrate beneficial effects of Desmodium species in enhancing cereal productivity in dry areas.

          Highlights

          • Parasitic weeds and soil degradation constraint cereal production in Africa.

          • Climate change aggravates these, reducing functionality of control approaches.

          • Drought tolerant Desmodium spp. effectively control striga and improve cereal grain yields.

          • Intercropping with these Desmodium spp. provide opportunity to improve cereal production in drier areas.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Delayed leaf senescence induces extreme drought tolerance in a flowering plant.

          Drought, the most prominent threat to agricultural production worldwide, accelerates leaf senescence, leading to a decrease in canopy size, loss in photosynthesis and reduced yields. On the basis of the assumption that senescence is a type of cell death program that could be inappropriately activated during drought, we hypothesized that it may be possible to enhance drought tolerance by delaying drought-induced leaf senescence. We generated transgenic plants expressing an isopentenyltransferase gene driven by a stress- and maturation-induced promoter. Remarkably, the suppression of drought-induced leaf senescence resulted in outstanding drought tolerance as shown by, among other responses, vigorous growth after a long drought period that killed the control plants. The transgenic plants maintained high water contents and retained photosynthetic activity (albeit at a reduced level) during the drought. Moreover, the transgenic plants displayed minimal yield loss when watered with only 30% of the amount of water used under control conditions. The production of drought-tolerant crops able to grow under restricted water regimes without diminution of yield would minimize drought-related losses and ensure food production in water-limited lands.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Achieving food security for one million sub-Saharan African poor through push–pull innovation by 2020

            Food insecurity is a chronic problem in Africa and is likely to worsen with climate change and population growth. It is largely due to poor yields of the cereal crops caused by factors including stemborer pests, striga weeds and degraded soils. A platform technology, ‘push–pull’, based on locally available companion plants, effectively addresses these constraints resulting in substantial grain yield increases. It involves intercropping cereal crops with a forage legume, desmodium, and planting Napier grass as a border crop. Desmodium repels stemborer moths (push), and attracts their natural enemies, while Napier grass attracts them (pull). Desmodium is very effective in suppressing striga weed while improving soil fertility through nitrogen fixation and improved organic matter content. Both companion plants provide high-value animal fodder, facilitating milk production and diversifying farmers’ income sources. To extend these benefits to drier areas and ensure long-term sustainability of the technology in view of climate change, drought-tolerant trap and intercrop plants are being identified. Studies show that the locally commercial brachiaria cv mulato (trap crop) and greenleaf desmodium (intercrop) can tolerate long droughts. New on-farm field trials show that using these two companion crops in adapted push–pull technology provides effective control of stemborers and striga weeds, resulting in significant grain yield increases. Effective multi-level partnerships have been established with national agricultural research and extension systems, non-governmental organizations and other stakeholders to enhance dissemination of the technology with a goal of reaching one million farm households in the region by 2020. These will be supported by an efficient desmodium seed production and distribution system in eastern Africa, relevant policies and stakeholder training and capacity development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pest management strategies in traditional agriculture: an African perspective.

              African agriculture is largely traditional--characterized by a large number of smallholdings of no more than one ha per household. Crop production takes place under extremely variable agro-ecological conditions, with annual rainfall ranging from 250 to 750 mm in the Sahel in the northwest and in the semi-arid east and south, to 1500 to 4000 mm in the forest zones in the central west. Farmers often select well-adapted, stable crop varieties, and cropping systems are such that two or more crops are grown in the same field at the same time. These diverse traditional systems enhance natural enemy abundance and generally keep pest numbers at low levels. Pest management practice in traditional agriculture is a built-in process in the overall crop production system rather than a separate well-defined activity. Increased population pressure and the resulting demand for increased crop production in Africa have necessitated agricultural expansion with the concomitant decline in the overall biodiversity. Increases in plant material movement in turn facilitated the accidental introduction of foreign pests. At present about two dozen arthropod pests, both introduced and native, are recognized as one of the major constraints to agricultural production and productivity in Africa. Although yield losses of 0% to 100% have been observed on-station, the economic significance of the majority of pests under farmers' production conditions is not adequately understood. Economic and social constraints have kept pesticide use in Africa the lowest among all the world regions. The bulk of pesticides are applied mostly against pests of commercial crops such as cotton, vegetables, coffee, and cocoa, and to some extent for combating outbreaks of migratory pests such as the locusts. The majority of African farmers still rely on indigenous pest management approaches to manage pest problems, although many government extension programs encourage the use of pesticides. The current pest management research activities carried out by national or international agricultural research programs in Africa focus on classical biological control and host plant resistance breeding. With the exception of classical biological control of the cassava mealybug, research results have not been widely adopted. This could be due to African farmers facing heterogeneous conditions, not needing fixed prescriptions or one ideal variety but a number of options and genotypes to choose from. Indigenous pest management knowledge is site-specific and should be the basis for developing integrated pest management (IPM) techniques. Farmers often lack the biological and ecological information necessary to develop better pest management through experimentation. Formal research should be instrumental in providing the input necessary to facilitate participatory technology development such as that done by Farmer Field Schools, an approach now emerging in different parts of Africa.
                Bookmark

                Author and article information

                Contributors
                Journal
                Crop Prot
                Crop Prot
                Crop Protection (Guildford, Surrey)
                Butterworth
                0261-2194
                1 August 2017
                August 2017
                : 98
                : 94-101
                Affiliations
                [a ]International Centre of Insect Physiology and Ecology ( icipe), P.O. Box 30772, Nairobi 00100, Kenya
                [b ]Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
                Author notes
                []Corresponding author. cmidega@ 123456icipe.org
                Article
                S0261-2194(17)30084-4
                10.1016/j.cropro.2017.03.018
                5465939
                28775391
                8407df28-f8e2-45e1-96f8-63b19ad13ed0
                © 2017 The Author(s)

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 7 February 2017
                : 14 March 2017
                : 17 March 2017
                Categories
                Article

                striga,climate change,desmodium,drought-tolerance,agricultural productivity

                Comments

                Comment on this article