21
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      OncoTargets and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the pathological basis of cancers, potential targets for therapy and treatment protocols to improve the management of cancer patients. Publishing high-quality, original research on molecular aspects of cancer, including the molecular diagnosis, since 2008. Sign up for email alerts here. 50,877 Monthly downloads/views I 4.345 Impact Factor I 7.0 CiteScore I 0.81 Source Normalized Impact per Paper (SNIP) I 0.811 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Meta-analysis of the impact of de novo and acquired EGFR T790M mutations on the prognosis of patients with non-small cell lung cancer receiving EGFR-TKIs

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          The purpose of this meta-analysis was to explore the influences of pretreatment de novo and posttreatment-acquired epidermal growth factor receptor ( EGFR) T790M mutations in patients with advanced non-small cell lung cancer (NSCLC) who had received tyrosine kinase inhibitors (TKIs).

          Methods

          We searched PubMed, Embase, and the China National Knowledge Infrastructure database for eligible literature. Data were extracted to assess the hazard ratios (HRs) for progression-free survival (PFS), overall survival (OS), and post-progression survival (PPS) and the relative ratios (RRs) for objective response rate (ORR).

          Results

          This meta-analysis included 22 studies comprising 1,462 patients with NSCLC who harbored activating EGFR mutations and were treated with EGFR-TKIs. Compared to pretreatment T790M mutation-negative NSCLC, pretreatment T790M mutation-positive NSCLC was associated with decreased PFS (HR 2.23, P<0.001) and OS (HR 1.55, P=0.003). A trend toward significance of worsening ORR (RR 0.86, P=0.051) was evident. The acquired T790M mutation was correlated with improved PFS (HR 0.75, P=0.006) and PPS (HR 0.57, P<0.001), compared to patients without the T790M mutation who progressed after EGFR-TKI treatment. There were no significant differences in OS or ORR between patients with acquired T790M mutation-positive and T790M mutation-negative NSCLC. However, in the tumor tissue rebiopsy subgroup, patients with acquired T790M mutation had improved OS (HR 0.60, P<0.001) compared to T790M mutation-negative patients. In the plasma ctDNA subgroup, acquired T790M mutation decreased the OS (HR 1.87, P<0.001).

          Conclusion

          Pretreatment T790M mutation was associated with worse PFS and OS in patients with advanced NSCLC treated with EGFR-TKIs, while acquired T790M mutation was associated with longer PFS and PPS than T790M mutation-negative NSCLC. The effects on OS were different between acquired T790M mutation detected from rebiopsy of tumor tissue and that detected from plasma ctDNA.

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Detection of mutations in EGFR in circulating lung-cancer cells.

          The use of tyrosine kinase inhibitors to target the epidermal growth factor receptor gene (EGFR) in patients with non-small-cell lung cancer is effective but limited by the emergence of drug-resistance mutations. Molecular characterization of circulating tumor cells may provide a strategy for noninvasive serial monitoring of tumor genotypes during treatment. We captured highly purified circulating tumor cells from the blood of patients with non-small-cell lung cancer using a microfluidic device containing microposts coated with antibodies against epithelial cells. We performed EGFR mutational analysis on DNA recovered from circulating tumor cells using allele-specific polymerase-chain-reaction amplification and compared the results with those from concurrently isolated free plasma DNA and from the original tumor-biopsy specimens. We isolated circulating tumor cells from 27 patients with metastatic non-small-cell lung cancer (median number, 74 cells per milliliter). We identified the expected EGFR activating mutation in circulating tumor cells from 11 of 12 patients (92%) and in matched free plasma DNA from 4 of 12 patients (33%) (P=0.009). We detected the T790M mutation, which confers drug resistance, in circulating tumor cells collected from patients with EGFR mutations who had received tyrosine kinase inhibitors. When T790M was detectable in pretreatment tumor-biopsy specimens, the presence of the mutation correlated with reduced progression-free survival (7.7 months vs. 16.5 months, P<0.001). Serial analysis of circulating tumor cells showed that a reduction in the number of captured cells was associated with a radiographic tumor response; an increase in the number of cells was associated with tumor progression, with the emergence of additional EGFR mutations in some cases. Molecular analysis of circulating tumor cells from the blood of patients with lung cancer offers the possibility of monitoring changes in epithelial tumor genotypes during the course of treatment. 2008 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer.

            Ten percent of North American patients with non-small-cell lung cancer have tumors with somatic mutations in the gene for the epidermal growth factor receptor (EGFR). Approximately 70% of patients whose lung cancers harbor somatic mutations in exons encoding the tyrosine kinase domain of EGFR experience significant tumor regressions when treated with the EGFR tyrosine kinase inhibitors (TKIs) gefitinib or erlotinib. However, the overwhelming majority of these patients inevitably acquire resistance to either drug. Currently, the clinical definition of such secondary or acquired resistance is not clear. We propose the following criteria be used to define more precisely acquired resistance to EGFR TKIs. All patients should have the following criteria: previous treatment with a single-agent EGFR TKI (eg, gefitinib or erlotinib); either or both of the following: a tumor that harbors an EGFR mutation known to be associated with drug sensitivity or objective clinical benefit from treatment with an EGFR TKI; systemic progression of disease (Response Evaluation Criteria in Solid Tumors [RECIST] or WHO) while on continuous treatment with gefitinib or erlotinib within the last 30 days; and no intervening systemic therapy between cessation of gefitinib or erlotinib and initiation of new therapy. The relatively simple definition proposed here will lead to a more uniform approach to investigating the problem of acquired resistance to EGFR TKIs in this unique patient population. These guidelines should minimize reporting of false-positive and false-negative activity in these clinical trials and would facilitate the identification of agents that truly overcome acquired resistance to gefitinib and erlotinib.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Osimertinib in Pretreated T790M-Positive Advanced Non-Small-Cell Lung Cancer: AURA Study Phase II Extension Component.

              Purpose Osimertinib is an irreversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) selective for both EGFR-TKI sensitizing ( EGFRm) and T790M resistance mutations. AURA (NCT01802632) is a phase I/II clinical trial to determine the dose, safety, and efficacy of osimertinib. This article reports the results from the phase II extension component. Patients and Methods Patients with EGFR-TKI-pretreated EGFRm- and T790M-positive advanced non-small-cell lung cancer (NSCLC) received once-daily osimertinib 80 mg. T790M status was confirmed by central testing from a tumor sample taken after the most recent disease progression. Patients with asymptomatic, stable CNS metastases that did not require corticosteroids were allowed to enroll. The primary end point was objective response rate (ORR) by independent radiology assessment. Secondary end points were disease control rate, duration of response, progression-free survival (PFS), and safety. Patient-reported outcomes comprised an exploratory objective. Results In total, 201 patients received treatment, with a median treatment duration of 13.2 months at the time of data cutoff (November 1, 2015). In evaluable patients (n = 198), ORR was 62% (95% CI, 54% to 68%), and the disease control rate was 90% (95% CI, 85 to 94). Median duration of response in 122 responding patients was 15.2 months (95% CI, 11.3 to not calculable). Median PFS was 12.3 months (95% CI, 9.5 to 13.8). The most common possibly causally related adverse events (investigator assessed) were diarrhea (43%; grade ≥ 3, < 1%) and rash (grouped terms; 40%; grade ≥ 3, < 1%). Interstitial lung disease (grouped terms) was reported in eight patients (4%; grade 1, n = 2; grade 3, n = 3; grade 5, n = 3). Conclusion In patients with EGFRm T790M advanced NSCLC who progress after EGFR-TKI treatment, osimertinib provides a high ORR, encouraging PFS, and durable response.
                Bookmark

                Author and article information

                Journal
                Onco Targets Ther
                Onco Targets Ther
                OncoTargets and Therapy
                OncoTargets and therapy
                Dove Medical Press
                1178-6930
                2017
                24 April 2017
                : 10
                : 2267-2279
                Affiliations
                Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
                Author notes
                Correspondence: Cheng-Bo Han, Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China, Tel +86 249 6615 ext 63115, Email hanchengbo@ 123456sj-hospital.org
                Article
                ott-10-2267
                10.2147/OTT.S133082
                5411171
                28479857
                8415f3ee-6909-4f20-bb33-2abd232f41a4
                © 2017 Liu et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Oncology & Radiotherapy
                epidermal growth factor receptor,t790m,non-small cell lung cancer,pretreatment,mutation

                Comments

                Comment on this article