10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Stem Cells as a Good Tool to Investigate Dysregulated Biological Systems in Autism Spectrum Disorders : Stem cells to investigate ASD

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Identification of the causes of autism spectrum disorders (ASDs) is hampered by their genetic heterogeneity; however, the different genetic alterations leading to ASD seem to be implicated in the disturbance of common molecular pathways or biological processes. In this scenario, the search for differentially expressed genes (DEGs) between ASD patients and controls is a good alternative to identify the molecular etiology of such disorders. Here, we employed genome-wide expression analysis to compare the transcriptome of stem cells of human exfoliated deciduous teeth (SHEDs) of idiopathic autistic patients (n = 7) and control samples (n = 6). Nearly half of the 683 identified DEGs are expressed in the brain (P = 0.003), and a significant number of them are involved in mechanisms previously associated with ASD such as protein synthesis, cytoskeleton regulation, cellular adhesion and alternative splicing, which validate the use of SHEDs to disentangle the causes of autism. Autistic patients also presented overexpression of genes regulated by androgen receptor (AR), and AR itself, which in turn interacts with CHD8 (chromodomain helicase DNA binding protein 8), a gene recently shown to be associated with the cause of autism and found to be upregulated in some patients tested here. These data provide a rationale for the mechanisms through which CHD8 leads to these diseases. In summary, our results suggest that ASD share deregulated pathways and revealed that SHEDs represent an alternative cell source to be used in the understanding of the biological mechanisms involved in the etiology of ASD. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          De novo gene disruptions in children on the autistic spectrum.

          Exome sequencing of 343 families, each with a single child on the autism spectrum and at least one unaffected sibling, reveal de novo small indels and point substitutions, which come mostly from the paternal line in an age-dependent manner. We do not see significantly greater numbers of de novo missense mutations in affected versus unaffected children, but gene-disrupting mutations (nonsense, splice site, and frame shifts) are twice as frequent, 59 to 28. Based on this differential and the number of recurrent and total targets of gene disruption found in our and similar studies, we estimate between 350 and 400 autism susceptibility genes. Many of the disrupted genes in these studies are associated with the fragile X protein, FMRP, reinforcing links between autism and synaptic plasticity. We find FMRP-associated genes are under greater purifying selection than the remainder of genes and suggest they are especially dosage-sensitive targets of cognitive disorders. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments.

            One of the main objectives in the analysis of microarray experiments is the identification of genes that are differentially expressed under two experimental conditions. This task is complicated by the noisiness of the data and the large number of genes that are examined simultaneously. Here, we present a novel technique for identifying differentially expressed genes that does not originate from a sophisticated statistical model but rather from an analysis of biological reasoning. The new technique, which is based on calculating rank products (RP) from replicate experiments, is fast and simple. At the same time, it provides a straightforward and statistically stringent way to determine the significance level for each gene and allows for the flexible control of the false-detection rate and familywise error rate in the multiple testing situation of a microarray experiment. We use the RP technique on three biological data sets and show that in each case it performs more reliably and consistently than the non-parametric t-test variant implemented in Tusher et al.'s significance analysis of microarrays (SAM). We also show that the RP results are reliable in highly noisy data. An analysis of the physiological function of the identified genes indicates that the RP approach is powerful for identifying biologically relevant expression changes. In addition, using RP can lead to a sharp reduction in the number of replicate experiments needed to obtain reproducible results.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Advances in autism genetics: on the threshold of a new neurobiology.

              Autism is a heterogeneous syndrome defined by impairments in three core domains: social interaction, language and range of interests. Recent work has led to the identification of several autism susceptibility genes and an increased appreciation of the contribution of de novo and inherited copy number variation. Promising strategies are also being applied to identify common genetic risk variants. Systems biology approaches, including array-based expression profiling, are poised to provide additional insights into this group of disorders, in which heterogeneity, both genetic and phenotypic, is emerging as a dominant theme.
                Bookmark

                Author and article information

                Journal
                Autism Research
                Autism Res
                Wiley
                19393792
                October 2013
                October 2013
                June 25 2013
                : 6
                : 5
                : 354-361
                Affiliations
                [1 ]Centro de Estudos do Genoma Humano; Departamento de Biologia; Instituto de Biociências; Universidade de São Paulo; São Paulo Brasil
                [2 ]Instituto de Psiquiatria do Hospital das Clínicas; Faculdade de Medicina; Universidade de São Paulo; São Paulo Brasil
                Article
                10.1002/aur.1296
                23801657
                84174ef5-ce2d-4997-9c29-29e7c6ad1f60
                © 2013

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article