11
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Elevated circulating Gpnmb levels are associated with hyperthyroidism

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Glycoprotein non-metastatic protein B (Gpnmb) has been identified as a new cytokine secreted by hepatocyte that plays an important role in balancing lipid homeostasis and development of obesity and metabolic disorders. However, information is not available regarding the association between circulating Gpnmb and hyperthyroid in humans.

          Methods:

          We measured serum Gpnmb in 180 hyperthyroid patients and 82 healthy subjects that were recruited from the clinic. Of them, 46 hyperthyroid patients received thionamide treatment for 3 months.

          Results:

          Hyperthyroid subjects had higher levels of circulating Gpnmb than healthy controls (47.8 ± 10.1 ng/mL vs 31.0 ± 4.9 ng/mL, P < 0.001). Subjects with higher levels of serum free triiodothyronine (T3) and free thyroxine (T4) had higher levels of circulating Gpnmb. After thionamide treatment, levels of circulating Gpnmb in hyperthyroid subjects remarkably declined with significant improvement of thyroid function ( P < 0.001). Furthermore, the change of circulating Gpnmb levels was significantly associated with basal metabolic rate (BMR) and thyroid hormones, including free T3 and free T4, adjusting for age, gender, smoking and BMI before thionamide treatment. In multivariable logistic regression analyses, circulating Gpnmb was significantly associated with risks of hyperthyroidism (OR (95% CI): 1.44 (1.20–1.74), P < 0.001), adjusted for age, gender, BMI, fasting glucose, HOMA-IR, LDL-cholesterol, ALT and AST.

          Conclusions:

          These findings indicate that circulating Gpnmb concentrations are independently associated with hyperthyroid, suggesting that circulating Gpnmb may be a predictor of risk for hyperthyroidism and can be used for therapeutic monitoring.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Thyroid hormone regulation of metabolism.

          Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5'-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH). In addition to TRH/TSH regulation by TH feedback, there is central modulation by nutritional signals, such as leptin, as well as peptides regulating appetite. The nutrient status of the cell provides feedback on TH signaling pathways through epigentic modification of histones. Integration of TH signaling with the adrenergic nervous system occurs peripherally, in liver, white fat, and BAT, but also centrally, in the hypothalamus. TR regulates cholesterol and carbohydrate metabolism through direct actions on gene expression as well as cross-talk with other nuclear receptors, including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), and bile acid signaling pathways. TH modulates hepatic insulin sensitivity, especially important for the suppression of hepatic gluconeogenesis. The role of TH in regulating metabolic pathways has led to several new therapeutic targets for metabolic disorders. Understanding the mechanisms and interactions of the various TH signaling pathways in metabolism will improve our likelihood of identifying effective and selective targets.
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular aspects of thyroid hormone actions.

            Cellular actions of thyroid hormone may be initiated within the cell nucleus, at the plasma membrane, in cytoplasm, and at the mitochondrion. Thyroid hormone nuclear receptors (TRs) mediate the biological activities of T(3) via transcriptional regulation. Two TR genes, alpha and beta, encode four T(3)-binding receptor isoforms (alpha1, beta1, beta2, and beta3). The transcriptional activity of TRs is regulated at multiple levels. Besides being regulated by T(3), transcriptional activity is regulated by the type of thyroid hormone response elements located on the promoters of T(3) target genes, by the developmental- and tissue-dependent expression of TR isoforms, and by a host of nuclear coregulatory proteins. These nuclear coregulatory proteins modulate the transcription activity of TRs in a T(3)-dependent manner. In the absence of T(3), corepressors act to repress the basal transcriptional activity, whereas in the presence of T(3), coactivators function to activate transcription. The critical role of TRs is evident in that mutations of the TRbeta gene cause resistance to thyroid hormones to exhibit an array of symptoms due to decreasing the sensitivity of target tissues to T(3). Genetically engineered knockin mouse models also reveal that mutations of the TRs could lead to other abnormalities beyond resistance to thyroid hormones, including thyroid cancer, pituitary tumors, dwarfism, and metabolic abnormalities. Thus, the deleterious effects of mutations of TRs are more severe than previously envisioned. These genetic-engineered mouse models provide valuable tools to ascertain further the molecular actions of unliganded TRs in vivo that could underlie the pathogenesis of hypothyroidism. Actions of thyroid hormone that are not initiated by liganding of the hormone to intranuclear TR are termed nongenomic. They may begin at the plasma membrane or in cytoplasm. Plasma membrane-initiated actions begin at a receptor on integrin alphavbeta3 that activates ERK1/2 and culminate in local membrane actions on ion transport systems, such as the Na(+)/H(+) exchanger, or complex cellular events such as cell proliferation. Concentration of the integrin on cells of the vasculature and on tumor cells explains recently described proangiogenic effects of iodothyronines and proliferative actions of thyroid hormone on certain cancer cells, including gliomas. Thus, hormonal events that begin nongenomically result in effects in DNA-dependent effects. l-T(4) is an agonist at the plasma membrane without conversion to T(3). Tetraiodothyroacetic acid is a T(4) analog that inhibits the actions of T(4) and T(3) at the integrin, including angiogenesis and tumor cell proliferation. T(3) can activate phosphatidylinositol 3-kinase by a mechanism that may be cytoplasmic in origin or may begin at integrin alphavbeta3. Downstream consequences of phosphatidylinositol 3-kinase activation by T(3) include specific gene transcription and insertion of Na, K-ATPase in the plasma membrane and modulation of the activity of the ATPase. Thyroid hormone, chiefly T(3) and diiodothyronine, has important effects on mitochondrial energetics and on the cytoskeleton. Modulation by the hormone of the basal proton leak in mitochondria accounts for heat production caused by iodothyronines and a substantial component of cellular oxygen consumption. Thyroid hormone also acts on the mitochondrial genome via imported isoforms of nuclear TRs to affect several mitochondrial transcription factors. Regulation of actin polymerization by T(4) and rT(3), but not T(3), is critical to cell migration. This effect has been prominently demonstrated in neurons and glial cells and is important to brain development. The actin-related effects in neurons include fostering neurite outgrowth. A truncated TRalpha1 isoform that resides in the extranuclear compartment mediates the action of thyroid hormone on the cytoskeleton.
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of thyroid hormone action.

              Our understanding of thyroid hormone action has been substantially altered by recent clinical observations of thyroid signaling defects in syndromes of hormone resistance and in a broad range of conditions, including profound mental retardation, obesity, metabolic disorders, and a number of cancers. The mechanism of thyroid hormone action has been informed by these clinical observations as well as by animal models and has influenced the way we view the role of local ligand availability; tissue and cell-specific thyroid hormone transporters, corepressors, and coactivators; thyroid hormone receptor (TR) isoform-specific action; and cross-talk in metabolic regulation and neural development. In some cases, our new understanding has already been translated into therapeutic strategies, especially for treating hyperlipidemia and obesity, and other drugs are in development to treat cardiac disease and cancer and to improve cognitive function.

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                August 2020
                19 July 2020
                : 9
                : 8
                : 783-792
                Affiliations
                [1 ]Department of Endocrinology and Metabolism , Nanfang Hospital, Southern Medical University, Guangzhou, China
                [2 ]Department of Endocrinology and Metabolism , Zhongshan Hospital, Fudan University, Shanghai, China
                [3 ]Department of Endocrinology , Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
                Author notes
                Correspondence should be addressed to L Jia or H Zhang: shenzhenjialijing@ 123456126.com or huijiezhang2005@ 123456126.com

                *(J Lin, P Zhang and Y Huang contributed equally to this work)

                Author information
                http://orcid.org/0000-0003-0640-0315
                Article
                EC-20-0240
                10.1530/EC-20-0240
                7487193
                32688342
                841fbd6d-50af-4674-8213-cf36bb731d69
                © 2020 The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 30 June 2020
                : 19 July 2020
                Categories
                Research

                gpnmb,thyroid hormone,hyperthyroidism,metabolism
                gpnmb, thyroid hormone, hyperthyroidism, metabolism

                Comments

                Comment on this article

                Related Documents Log