17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sphingomyelin Functions as a Novel Receptor for Helicobacter pylori VacA

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The vacuolating cytotoxin (VacA) of the gastric pathogen Helicobacter pylori binds and enters epithelial cells, ultimately resulting in cellular vacuolation. Several host factors have been reported to be important for VacA function, but none of these have been demonstrated to be essential for toxin binding to the plasma membrane. Thus, the identity of cell surface receptors critical for both toxin binding and function has remained elusive. Here, we identify VacA as the first bacterial virulence factor that exploits the important plasma membrane sphingolipid, sphingomyelin (SM), as a cellular receptor. Depletion of plasma membrane SM with sphingomyelinase inhibited VacA-mediated vacuolation and significantly reduced the sensitivity of HeLa cells, as well as several other cell lines, to VacA. Further analysis revealed that SM is critical for VacA interactions with the plasma membrane. Restoring plasma membrane SM in cells previously depleted of SM was sufficient to rescue both toxin vacuolation activity and plasma membrane binding. VacA association with detergent-resistant membranes was inhibited in cells pretreated with SMase C, indicating the importance of SM for VacA association with lipid raft microdomains. Finally, VacA bound to SM in an in vitro ELISA assay in a manner competitively inhibited by lysenin, a known SM-binding protein. Our results suggest a model where VacA may exploit the capacity of SM to preferentially partition into lipid rafts in order to access the raft-associated cellular machinery previously shown to be required for toxin entry into host cells.

          Author Summary

          Sensitivity to toxins produced by pathogenic bacteria is largely dictated by the presence or absence of toxin receptors on the plasma membrane of host cells. VacA is an important toxin produced by the pathogenic bacterium Helicobacter pylori, which infects the human stomach and causes gastric ulcer disease and stomach cancer. VacA binds and enters human cells, and induces several changes resulting ultimately in the death of the intoxicated cells. However, the identity of the VacA receptor responsible for toxin binding and function has remained a topic of debate. In this paper, we demonstrate that sphingomyelin, a lipid on the surface of cells with important membrane structural and signaling properties, functions as a VacA receptor. We demonstrate that VacA binds to sphingomyelin, and that presence or absence of sphingomyelin on the plasma membrane dictates how much VacA binds to the cell surface, and therefore, how sensitive cells are to the toxin. The identification of sphingomyelin also provides a conceptual framework for how VacA may enter cells through specialized functional domains on the surface of cells. This is the first example of a bacterial toxin that exploits sphingomyelin as a receptor, and future work will focus on developing strategies to block VacA interactions with sphingomyelin, thereby protecting cells from the downstream consequences of toxin action.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: not found
          • Article: not found

          Helicobacter pylori infection.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy.

            Sphingolipids are comprised of a backbone sphingoid base that may be phosphorylated, acylated, glycosylated, bridged to various headgroups through phosphodiester linkages, or otherwise modified. Organisms usually contain large numbers of sphingolipid subspecies and knowledge about the types and amounts is imperative because they influence membrane structure, interactions with the extracellular matrix and neighboring cells, vesicular traffic and the formation of specialized structures such as phagosomes and autophagosomes, as well as participate in intracellular and extracellular signaling. Fortunately, "sphingolipidomic" analysis is becoming feasible (at least for important subsets such as all of the backbone "signaling" subspecies: ceramides, ceramide 1-phosphates, sphingoid bases, sphingoid base 1-phosphates, inter alia) using mass spectrometry, and these profiles are revealing many surprises, such as that under certain conditions cells contain significant amounts of "unusual" species: N-mono-, di-, and tri-methyl-sphingoid bases (including N,N-dimethylsphingosine); 3-ketodihydroceramides; N-acetyl-sphingoid bases (C2-ceramides); and dihydroceramides, in the latter case, in very high proportions when cells are treated with the anticancer drug fenretinide (4-hydroxyphenylretinamide). The elevation of DHceramides by fenretinide is befuddling because the 4,5-trans-double bond of ceramide has been thought to be required for biological activity; however, DHceramides induce autophagy and may be important in the regulation of this important cellular process. The complexity of the sphingolipidome is hard to imagine, but one hopes that, when partnered with other systems biology approaches, the causes and consequences of the complexity will explain how these intriguing compounds are involved in almost every aspect of cell behavior and the malfunctions of many diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How proteins move lipids and lipids move proteins.

              Cells determine the bilayer characteristics of different membranes by tightly controlling their lipid composition. Local changes in the physical properties of bilayers, in turn, allow membrane deformation, and facilitate vesicle budding and fusion. Moreover, specific lipids at specific locations recruit cytosolic proteins involved in structural functions or signal transduction. We describe here how the distribution of lipids is directed by proteins, and, conversely, how lipids influence the distribution and function of proteins.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                May 2008
                May 2008
                23 May 2008
                : 4
                : 5
                : e1000073
                Affiliations
                [1 ]Department of Microbiology, Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
                [2 ]Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
                University of California San Diego, United States of America
                Author notes

                Conceived and designed the experiments: JE SB. Performed the experiments: VG HP SK RB. Analyzed the data: VG HP SK SB. Contributed reagents/materials/analysis tools: VG. Wrote the paper: JE SB.

                Article
                07-PLPA-RA-0887R3
                10.1371/journal.ppat.1000073
                2374909
                18497859
                8425b945-1ad1-49c5-8de5-c304bcefba8e
                Gupta et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 December 2007
                : 15 April 2008
                Page count
                Pages: 12
                Categories
                Research Article
                Microbiology/Cellular Microbiology and Pathogenesis

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article