14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pharmacological causes of hyperprolactinemia

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyperprolactinemia is a common endocrinological disorder that may be caused by several physiological and pathological conditions. Several drugs may determine a significant increase in prolactin serum concentration that is frequently associated with symptoms. The so-called typical antipsychotics are frequently responsible for drug-related hyperprolactinemia. Risperidone is one of the atypical neuroleptics most likely to induce hyperprolactinemia, while other atypical drugs are unfrequenlty and only transiently associated with increase of prolactin levels. Women are more sensitive than men to the hyperprolactinemic effect of antipsychotics. Classical and risperidone-induced hyperprolactinemia may be revert when a gradual antipsychotic drug discontinuation is combined with olanzapine or clozapine initiation. Antidepressant drugs with serotoninergic activity, including selective serotonin reuptake inhibitors (SSRI), monoamine oxidase inhibitors (MAO-I) and some tricyclics, can cause hyperprolactinemia. A long list of other compounds may determine an increase in prolactin levels, including prokinetics, opiates, estrogens, anti-androgens, anti-hypertensive drugs, H2-receptor antagonists, anti-convulsivants and cholinomimetics. Finally, hyperprolactinemia has also been documented during conditioning and after autologous blood stem-cell transplantation and during chemotherapy, even though disturbances of prolactin seem to occur less frequently than impairments of the hypothalamus-pituitary-gonad/thyroid axis after intensive treatment and blood marrow transplantation.

          Related collections

          Most cited references 204

          • Record: found
          • Abstract: found
          • Article: not found

          Atypical antipsychotics: mechanism of action.

           Philip Seeman (2002)
          Although the principal brain target that all antipsychotic drugs attach to is the dopamine D2 receptor, traditional or typical antipsychotics, by attaching to it, induce extrapyramidal signs and symptoms (EPS). They also, by binding to the D2 receptor, elevate serum prolactin. Atypical antipsychotics given in dosages within the clinically effective range do not bring about these adverse clinical effects. To understand how these drugs work, it is important to examine the atypical antipsychotics' mechanism of action and how it differs from that of the more typical drugs. This review analyzes the affinities, the occupancies, and the dissociation time-course of various antipsychotics at dopamine D2 receptors and at serotonin (5-HT) receptors, both in the test tube and in live patients. Of the 31 antipsychotics examined, the older traditional antipsychotics such as trifluperazine, pimozide, chlorpromazine, fluphenazine, haloperidol, and flupenthixol bind more tightly than dopamine itself to the dopamine D2 receptor, with dissociation constants that are lower than that for dopamine. The newer, atypical antipsychotics such as quetiapine, remoxipride, clozapine, olanzapine, sertindole, ziprasidone, and amisulpride all bind more loosely than dopamine to the dopamine D2 receptor and have dissociation constants higher than that for dopamine. These tight and loose binding data agree with the rates of antipsychotic dissociation from the human-cloned D2 receptor. For instance, radioactive haloperidol, chlorpromazine, and raclopride all dissociate very slowly over a 30-minute time span, while radioactive quetiapine, clozapine, remoxipride, and amisulpride dissociate rapidly, in less than 60 seconds. These data also match clinical brain-imaging findings that show haloperidol remaining constantly bound to D2 in humans undergoing 2 positron emission tomography (PET) scans 24 hours apart. Conversely, the occupation of D2 by clozapine or quetiapine has mostly disappeared after 24 hours. Atypicals clinically help patients by transiently occupying D2 receptors and then rapidly dissociating to allow normal dopamine neurotransmission. This keeps prolactin levels normal, spares cognition, and obviates EPS. One theory of atypicality is that the newer drugs block 5-HT2A receptors at the same time as they block dopamine receptors and that, somehow, this serotonin-dopamine balance confers atypicality. This, however, is not borne out by the results. While 5-HT2A receptors are readily blocked at low dosages of most atypical antipsychotic drugs (with the important exceptions of remoxipride and amisulpride, neither of which is available for use in Canada) the dosages at which this happens are below those needed to alleviate psychosis. In fact, the antipsychotic threshold occupancy of D2 for antipsychotic action remains at about 65% for both typical and atypical antipsychotic drugs, regardless of whether 5-HT2A receptors are blocked or not. At the same time, the antipsychotic threshold occupancy of D2 for eliciting EPS remains at about 80% for both typical and atypical antipsychotics, regardless of the occupancy of 5-HT2A receptors. The "fast-off-D2" theory, on the other hand, predicts which antipsychotic compounds will or will not produce EPS and hyperprolactinemia and which compounds present a relatively low risk for tardive dyskinesia. This theory also explains why L-dopa psychosis responds to low atypical antipsychotic dosages, and it suggests various individualized treatment strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antipsychotic-induced hyperprolactinaemia: mechanisms, clinical features and management.

            Hyperprolactinaemia is an important but neglected adverse effect of antipsychotic medication. It occurs frequently with conventional antipsychotics and some atypical antipsychotics (risperidone and amisulpride) but is rare with other atypical antipsychotics (aripiprazole, clozapine, olanzapine, quetiapine, ziprasidone). For this reason the terms 'prolactin-sparing' and 'prolactin-raising' are more useful than 'atypical' and 'conventional' when considering the effect of antipsychotic drugs on serum prolactin. During antipsychotic treatment prolactin levels can rise 10-fold or more above pretreatment values. In a recent study approximately 60% of women and 40% of men treated with a prolactin-raising antipsychotic had a prolactin level above the upper limit of the normal range. The distinction between asymptomatic and symptomatic hyperprolactinaemia is important but is often not made in the literature. Some symptoms of hyperprolactinaemia result from a direct effect of prolactin on target tissues but others result from hypogonadism caused by prolactin disrupting the normal functioning of the hypothalamic-pituitary-gonadal axis. Symptoms of hyperprolactinaemia include gynaecomastia, galactorrhoea, sexual dysfunction, infertility, oligomenorrhoea and amenorrhoea. These symptoms are little researched in psychiatric patients. Existing data suggest that they are common but that clinicians underestimate their prevalence. For example, well conducted studies of women treated with conventional antipsychotics have reported prevalence rates of approximately 45% for oligomenorrhoea/amenorrhoea and 19% for galactorrhoea. An illness-related under-function of the hypothalamic-pituitary-gonadal axis in female patients with schizophrenia may also contribute to menstrual irregularities. Long-term consequences of antipsychotic-related hypogonadism require further research but are likely and include premature bone loss in men and women. There are conflicting data on whether hyperprolactinaemia is associated with an increased risk of breast cancer in women. In patients prescribed antipsychotics who have biochemically confirmed hyperprolactinaemia it is important to exclude other causes of prolactin elevation, in particular tumours in the hypothalamic-pituitary area. If a patient has been amenorrhoeic for 1 year or more, investigations should include bone mineral density measurements. Management should be tailored to the individual patient. Options include reducing the dose of the antipsychotic, switching to a prolactin-sparing agent, prescribing a dopamine receptor agonist and prescribing estrogen replacement in hypoestrogenic female patients. The efficacy and risks of the last two treatment options have not been systematically examined. Antipsychotic-induced hyperprolactinaemia should become a focus of interest in the drug treatment of psychiatric patients, particularly given the recent introduction of prolactin-sparing antipsychotics. Appropriate investigations and effective management should reduce the burden of adverse effects and prevent long-term consequences. Copyright 2004 Adis Data Information BV
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Olanzapine versus haloperidol in the treatment of schizophrenia and schizoaffective and schizophreniform disorders: results of an international collaborative trial.

              This international, multicenter double-blind trial was designed to compare the therapeutic profile of an atypical antipsychotic, olanzapine, with that of a conventional dopamine D2 antagonist, haloperidol. A total of 1,996 patients at 174 sites in Europe and North America were randomly assigned to treatment with olanzapine (N = 1,336) or haloperidol (N = 660) over 6 weeks. The primary efficacy analysis involved the mean change from baseline to endpoint in total scores on the Brief Psychiatric Rating Scale (BPRS). Secondary analyses included comparisons of the mean change in positive and negative symptoms, comorbid depression, extrapyramidal symptoms, and overall drug safety. Olanzapine demonstrated clinical results superior to those of haloperidol on overall improvement according to the BPRS and on every secondary measure, including depression. Olanzapine was also associated with significantly fewer discontinuations of treatment due to lack of drug efficacy or adverse events. Substantially more olanzapine-treated patients (66.5%) than haloperidol-treated patients (46.8%) completed 6 weeks of therapy. Statistically significant advantages of olanzapine treatment were related to 1) change in negative symptoms, 2) extrapyramidal symptom profile, 3) effect on prolactin levels, and 4) response rate. Olanzapine shows a superior and broader spectrum of efficacy in the treatment of schizophrenic psychopathology, with a substantially more favorable safety profile, than haloperidol. It meets several of the criteria for a novel atypical antipsychotic agent.
                Bookmark

                Author and article information

                Journal
                Ther Clin Risk Manag
                Therapeutics and Clinical Risk Management
                Therapeutics and Clinical Risk Management
                Dove Medical Press
                1176-6336
                1178-203X
                October 2007
                October 2007
                : 3
                : 5
                : 929-951
                Affiliations
                Department of Internal Medicine, Section of Internal Medicine and Endocrine and Metabolic Sciences, University of Perugia Perugia, Italy
                Author notes
                Correspondence: Alberto Falorni Department of Internal medicine, Section of Internal Medicine and Endocrine and Metabolic Sciences, Via E. Dal Pozzo, 06126 Perugia, Italy Tel +39 075 578 3588 Fax +39 075 573 0855 Email falorni@ 123456dimisem.med.unipg.it
                Article
                2376090
                18473017
                © 2007 Dove Medical Press Limited. All rights reserved
                Categories
                Review

                Medicine

                prokinetics, estrogens, opioids, anti-psychotics, anti-depressants, prolactin

                Comments

                Comment on this article