20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Early-life high-fat diet-induced obesity programs hippocampal development and cognitive functions via regulation of gut commensal Akkermansia muciniphila

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Obesity is one of the most serious public health challenges in the world. Obesity during early life has been associated with an increased risk of neurodevelopmental disorders, including deficits in learning and memory, yet the underlying mechanisms remain unclear. Here, we show that early life high-fat diet (HFD) feeding impairs hippocampus–dependent contextual/spatial learning and memory, and alters the gut microbiota, particularly by depleting Akkermansia muciniphila ( A. muciniphila ), in mice. Transplantation of the HFD microbiota confers hippocampus-dependent learning and memory deficits to mice fed a chow diet. Oral treatment of HFD-fed mice with the gut commensal A. muciniphila corrects gut permeability, reduces hippocampal microgliosis and proinflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6) expression, and restores neuronal development and synapse plasticity, thus ameliorates defects in learning and memory. Interestingly, treatment of mice with lipopolysaccharide (LPS) mimics HFD-induced hippocampus-dependent cognitive impairment in chow-fed mice. In line with these findings, pharmacologic blockade of Toll-like receptor 4 (TLR4) signalling or antibiotics treatment both effectively prevent hippocampus-dependent learning and memory deficits in HFD-fed mice. Collectively, our findings demonstrate an unexpected pivotal role of gut microbiota in HFD-induced cognitive deficits and identify a potential probiotic therapy for obesity associated with cognitive dysfunction during early life.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Microbes inside--from diversity to function: the case of Akkermansia.

          The human intestinal tract is colonized by a myriad of microbes that have developed intimate interactions with the host. In healthy individuals, this complex ecosystem remains stable and resilient to stressors. There is significant attention on the understanding of the composition and function of this intestinal microbiota in health and disease. Current developments in metaomics and systems biology approaches allow to probe the functional potential and activity of the intestinal microbiota. However, all these approaches inherently suffer from the fact that the information on macromolecules (DNA, RNA and protein) is collected at the ecosystem level. Similarly, all physiological and other information collected from isolated strains relates to pure cultures grown in vitro or in gnotobiotic systems. It is essential to integrate these two worlds of predominantly chemistry and biology by linking the molecules to the cells. Here, we will address the integration of omics- and culture-based approaches with the complexity of the human intestinal microbiota in mind and the mucus-degrading bacteria Akkermansia spp. as a paradigm.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract.

            A 16S rRNA-targeted probe, MUC-1437, was designed and validated in order to determine the presence and numbers of cells of Akkermansia muciniphila, a mucin degrader, in the human intestinal tract. As determined by fluorescent in situ hybridization, A. muciniphila accounted more than 1% of the total fecal cells and was shown to be a common bacterial component of the human intestinal tract.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis

              The medicinal fungus Ophiocordyceps sinensis and its anamorph Hirsutella sinensis have a long history of use in traditional Chinese medicine for their immunomodulatory properties. Alterations of the gut microbiota have been described in obesity and type 2 diabetes. We examined the possibility that H. sinensis mycelium (HSM) and isolated fractions containing polysaccharides may prevent diet-induced obesity and type 2 diabetes by modulating the composition of the gut microbiota. High-fat diet (HFD)-fed mice were treated with HSM or fractions containing polysaccharides of different molecular weights. The effects of HSM and polysaccharides on the gut microbiota were assessed by horizontal faecal microbiota transplantation (FMT), antibiotic treatment and 16S rDNA-based microbiota analysis. Fraction H1 containing high-molecular weight polysaccharides (>300 kDa) considerably reduced body weight gain (∼50% reduction) and metabolic disorders in HFD-fed mice. These effects were associated with increased expression of thermogenesis protein markers in adipose tissues, enhanced gut integrity, reduced intestinal and systemic inflammation and improved insulin sensitivity and lipid metabolism. Gut microbiota analysis revealed that H1 polysaccharides selectively promoted the growth of Parabacteroides goldsteinii , a commensal bacterium whose level was reduced in HFD-fed mice. FMT combined with antibiotic treatment showed that neomycin-sensitive gut bacteria negatively correlated with obesity traits and were required for H1’s anti-obesogenic effects. Notably, oral treatment of HFD-fed mice with live P. goldsteinii reduced obesity and was associated with increased adipose tissue thermogenesis, enhanced intestinal integrity and reduced levels of inflammation and insulin resistance. HSM polysaccharides and the gut bacterium P. goldsteinii represent novel prebiotics and probiotics that may be used to treat obesity and type 2 diabetes.
                Bookmark

                Author and article information

                Journal
                Neuropsychopharmacology
                Neuropsychopharmacol.
                Springer Science and Business Media LLC
                0893-133X
                1740-634X
                June 17 2019
                Article
                10.1038/s41386-019-0437-1
                6897910
                31207607
                842fde2a-fd43-4a4c-aa3d-d580f9b43fe5
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article