7
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Very Low Density Lipoprotein Metabolism in Patients with Chronic Kidney Disease

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Hypertriglyceridemia is a common metabolic complication of chronic kidney disease (CKD) and an important risk factor for coronary heart disease in this patient population. The mechanisms responsible for the development of hypertriglyceridemia in subjects with CKD are not clear. Methods: We studied very low density lipoprotein triglyceride (VLDL-TG) and VLDL-apolipoprotein B-100 (VLDL-apoB-100) kinetics in vivo in 6 subjects with non-dialysis-dependent CKD (CKD-ND), 6 subjects with CKD treated with peritoneal dialysis (CKD-PD) and 24 sex-, age- and body mass index-matched control subjects with normal renal function (12 control subjects each matched with the CKD-ND and CKD-PD group, respectively). Results: The secretion rates of VLDL-TG and VLDL-apoB-100 into plasma were not different between CKD-ND or CKD-PD and their respective control groups. The mean residence times of VLDL-TG and VLDL-apoB-100 in plasma, which represents the time VLDL-TG and VLDL-apoB-100 spend in the circulation after secretion by the liver, tended to be greater in subjects with CKD-ND than in control subjects (222 ± 38 vs. 143 ± 21 min, p = 0.07, and 352 ± 102 vs. 200 ± 20 min, p = 0.06, respectively) and were about two-fold greater in subjects with CKD-PD compared with their control group (248 ± 51 vs. 143 ± 21 min and 526 ± 116 vs. 182 ± 16 min, respectively; both p ≤ 0.01). Conclusion: Impaired plasma clearance of VLDL-TG and VLDL-apoB-100 is the major abnormality associated with hypertriglyceridemia in patients with either CKD-ND or CKD-PD.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Chronic kidney disease and mortality risk: a systematic review.

          Current guidelines identify people with chronic kidney disease (CKD) as being at high risk for cardiovascular and all-cause mortality. Because as many as 19 million Americans may have CKD, a comprehensive summary of this risk would be potentially useful for planning public health policy. A systematic review of the association between non-dialysis-dependent CKD and the risk for all-cause and cardiovascular mortality was conducted. Patient- and study-related characteristics that influenced the magnitude of these associations also were investigated. MEDLINE and EMBASE databases were searched, and reference lists through December 2004 were consulted. Authors of 10 primary studies provided additional data. Cohort studies or cohort analyses of randomized, controlled trials that compared mortality between those with and without chronically reduced kidney function were included. Studies were excluded from review when participants were followed for < 1 yr or had ESRD. Two reviewers independently extracted data on study setting, quality, participant and renal function characteristics, and outcomes. Thirty-nine studies that followed a total of 1,371,990 participants were reviewed. The unadjusted relative risk for mortality in participants with reduced kidney function compared with those without ranged from 0.94 to 5.0 and was significantly more than 1.0 in 93% of cohorts. Among the 16 studies that provided suitable data, the absolute risk for death increased exponentially with decreasing renal function. Fourteen cohorts described the risk for mortality from reduced kidney function, after adjustment for other established risk factors. Although adjusted relative hazards were consistently lower than unadjusted relative risks (median reduction 17%), they remained significantly more than 1.0 in 71% of cohorts. This review supports current guidelines that identify individuals with CKD as being at high risk for cardiovascular mortality. Determining which interventions best offset this risk remains a health priority.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences.

            N. Vaziri (2006)
            Chronic renal failure (CRF) results in profound lipid disorders, which stem largely from dysregulation of high-density lipoprotein (HDL) and triglyceride-rich lipoprotein metabolism. Specifically, maturation of HDL is impaired and its composition is altered in CRF. In addition, clearance of triglyceride-rich lipoproteins and their atherogenic remnants is impaired, their composition is altered, and their plasma concentrations are elevated in CRF. Impaired maturation of HDL in CRF is primarily due to downregulation of lecithin-cholesterol acyltransferase (LCAT) and, to a lesser extent, increased plasma cholesteryl ester transfer protein (CETP). Triglyceride enrichment of HDL in CRF is primarily due to hepatic lipase deficiency and elevated CETP activity. The CRF-induced hypertriglyceridemia, abnormal composition, and impaired clearance of triglyceride-rich lipoproteins and their remnants are primarily due to downregulation of lipoprotein lipase, hepatic lipase, and the very-low-density lipoprotein receptor, as well as, upregulation of hepatic acyl-CoA cholesterol acyltransferase (ACAT). In addition, impaired HDL metabolism contributes to the disturbances of triglyceride-rich lipoprotein metabolism. These abnormalities are compounded by downregulation of apolipoproteins apoA-I, apoA-II, and apoC-II in CRF. Together, these abnormalities may contribute to the risk of arteriosclerotic cardiovascular disease and may adversely affect progression of renal disease and energy metabolism in CRF.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Triglycerides and heart disease: still a hypothesis?

              The purpose of this article is to review the basic and clinical science relating plasma triglycerides and cardiovascular disease. Although many aspects of the basic physiology of triglyceride production, its plasma transport, and its tissue uptake have been known for several decades, the relationship of plasma triglyceride levels to vascular disease is uncertain. Are triglyceride-rich lipoproteins, their influence on high-density lipoprotein and low-density lipoprotein, or the underlying diseases that lead to defects in triglyceride metabolism the culprit? Animal models have failed to confirm that anything other than early fatty lesions can be produced by triglyceride-rich lipoproteins. Metabolic products of triglyceride metabolism can be toxic to arterial cells; however, these studies are primarily in vitro. Correlative studies of fasting and postprandial triglycerides and genetic diseases implicate very-low-density lipoprotein and their remnants and chylomicron remnants in atherosclerosis development, but the concomitant alterations in other lipoproteins and other risk factors obscure any conclusions about direct relationships between disease and triglycerides. Genes that regulate triglyceride levels also correlate with vascular disease. Human intervention trials, however, have lacked an appropriately defined population and have produced outcomes without definitive conclusions. The time is more than ripe for new and creative approaches to understanding the relationship of triglycerides and heart disease.
                Bookmark

                Author and article information

                Journal
                CRM
                Cardiorenal Med
                10.1159/issn.1664-5502
                Cardiorenal Medicine
                S. Karger AG
                1664-3828
                1664-5502
                2012
                February 2012
                26 January 2012
                : 2
                : 1
                : 57-65
                Affiliations
                aCenter for Human Nutrition, and bRenal Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Mo., USA
                Author notes
                *Samuel Klein, MD, Division of Geriatrics and Nutritional Sciences, 660 South Euclid Avenue, Campus Box 8031, St. Louis, MO 63110 (USA), Tel. +1 314 362 8708, E-Mail sklein@wustl.edu
                Article
                335509 PMC3318940 Cardiorenal Med 2012;2:57–65
                10.1159/000335509
                PMC3318940
                22493604
                8443294e-8ace-4daa-9ca4-5145121fc249
                © 2012 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 21 October 2011
                : 28 November 2011
                Page count
                Figures: 1, Tables: 2, Pages: 9
                Categories
                Original Paper

                Cardiovascular Medicine,Nephrology
                Renal failure,Isotope tracer,Lipoprotein,Metabolism
                Cardiovascular Medicine, Nephrology
                Renal failure, Isotope tracer, Lipoprotein, Metabolism

                Comments

                Comment on this article