Blog
About

30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Activation of Arp2/3 Complex: Addition of the First Subunit of the New Filament by a WASP Protein Triggers Rapid ATP Hydrolysis on Arp2

      1 , , 2

      PLoS Biology

      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In response to activation by WASP-family proteins, the Arp2/3 complex nucleates new actin filaments from the sides of preexisting filaments. The Arp2/3-activating (VCA) region of WASP-family proteins binds both the Arp2/3 complex and an actin monomer and the Arp2 and Arp3 subunits of the Arp2/3 complex bind ATP. We show that Arp2 hydrolyzes ATP rapidly—with no detectable lag—upon nucleation of a new actin filament. Filamentous actin and VCA together do not stimulate ATP hydrolysis on the Arp2/3 complex, nor do monomeric and filamentous actin in the absence of VCA. Actin monomers bound to the marine macrolide Latrunculin B do not polymerize, but in the presence of phalloidin-stabilized actin filaments and VCA, they stimulate rapid ATP hydrolysis on Arp2. These data suggest that ATP hydrolysis on the Arp2/3 complex is stimulated by interaction with a single actin monomer and that the interaction is coordinated by VCA. We show that capping of filament pointed ends by the Arp2/3 complex (which occurs even in the absence of VCA) also stimulates rapid ATP hydrolysis on Arp2, identifying the actin monomer that stimulates ATP hydrolysis as the first monomer at the pointed end of the daughter filament. We conclude that WASP-family VCA domains activate the Arp2/3 complex by driving its interaction with a single conventional actin monomer to form an Arp2–Arp3–actin nucleus. This actin monomer becomes the first monomer of the new daughter filament.

          Abstract

          This paper provides the biochemical and biophysical basis for actin filament formation, necessary for cell shape and motility

          Related collections

          Most cited references 28

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular mechanisms controlling actin filament dynamics in nonmuscle cells.

          We review how motile cells regulate actin filament assembly at their leading edge. Activation of cell surface receptors generates signals (including activated Rho family GTPases) that converge on integrating proteins of the WASp family (WASp, N-WASP, and Scar/WAVE). WASP family proteins stimulate Arp2/3 complex to nucleate actin filaments, which grow at a fixed 70 degrees angle from the side of pre-existing actin filaments. These filaments push the membrane forward as they grow at their barbed ends. Arp2/3 complex is incorporated into the network, and new filaments are capped rapidly, so that activated Arp2/3 complex must be supplied continuously to keep the network growing. Hydrolysis of ATP bound to polymerized actin followed by phosphate dissociation marks older filaments for depolymerization by ADF/cofilins. Profilin catalyzes exchange of ADP for ATP, recycling actin back to a pool of unpolymerized monomers bound to profilin and thymosin-beta 4 that is poised for rapid elongation of new barbed ends.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly.

            Although small GTP-binding proteins of the Rho family have been implicated in signaling to the actin cytoskeleton, the exact nature of the linkage has remained obscure. We describe a novel mechanism that links one Rho family member, Cdc42, to actin polymerization. N-WASP, a ubiquitously expressed Cdc42-interacting protein, is required for Cdc42-stimulated actin polymerization in Xenopus egg extracts. The C terminus of N-WASP binds to the Arp2/3 complex and dramatically stimulates its ability to nucleate actin polymerization. Although full-length N-WASP is less effective, its activity can be greatly enhanced by Cdc42 and phosphatidylinositol (4,5) bisphosphate. Therefore, N-WASP and the Arp2/3 complex comprise a core mechanism that directly connects signal transduction pathways to the stimulation of actin polymerization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments.

              The Arp2/3 complex is a stable assembly of seven protein subunits including two actin-related proteins (Arp2 and Arp3) and five novel proteins. Previous work showed that this complex binds to the sides of actin filaments and is concentrated at the leading edges of motile cells. Here, we show that Arp2/3 complex purified from Acanthamoeba caps the pointed ends of actin filaments with high affinity. Arp2/3 complex inhibits both monomer addition and dissociation at the pointed ends of actin filaments with apparent nanomolar affinity and increases the critical concentration for polymerization at the pointed end from 0.6 to 1.0 microM. The high affinity of Arp2/3 complex for pointed ends and its abundance in amoebae suggest that in vivo all actin filament pointed ends are capped by Arp2/3 complex. Arp2/3 complex also nucleates formation of actin filaments that elongate only from their barbed ends. From kinetic analysis, the nucleation mechanism appears to involve stabilization of polymerization intermediates (probably actin dimers). In electron micrographs of quick-frozen, deep-etched samples, we see Arp2/3 bound to sides and pointed ends of actin filaments and examples of Arp2/3 complex attaching pointed ends of filaments to sides of other filaments. In these cases, the angle of attachment is a remarkably constant 70 +/- 7 degrees. From these in vitro biochemical properties, we propose a model for how Arp2/3 complex controls the assembly of a branching network of actin filaments at the leading edge of motile cells.
                Bookmark

                Author and article information

                Journal
                PLoS Biol
                pbio
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                April 2004
                13 April 2004
                : 2
                : 4
                Affiliations
                1simpleGraduate Group in Biophysics, University of California San Francisco, San Francisco, CaliforniaUnited States of America
                2simpleDepartment of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CaliforniaUnited States of America
                Article
                10.1371/journal.pbio.0020091
                387265
                15094799
                Copyright: © 2004 Dayel and Mullins. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use of, distribution, and reproduction in any medium, provided the original work is properly cited
                Categories
                Research Article
                Biophysics
                Cell Biology
                Molecular Biology/Structural Biology
                Eukaryotes

                Life sciences

                Comments

                Comment on this article